Atomic photofragment polarization as a probe of molecular photodissociation dynamics

Mark Brouard

The Department of Chemistry
Oxford University

Stereodynamics, November 2006
Acknowledgements

The Group

Raluca Cireasa Visiting scientist
Andrew Clark D.Phil. student
Fabio Quadrini D.Phil. student
Yuan-Pin Chang D.Phil. student
Alex Johnsen D.Phil. student
Chris Eyles D.Phil. student
Alistair Green Part II student
Alessandra La Via Part II student
Weihao Yuen Part II student
Acknowledgements

Collaborations

Claire Vallance

Oleg S. Vasyutinskii Theory
Gerrit C. Groenenboom

Gus Hancock
Grant Ritchie Ozone
Sophie Horrocks

Funding

EPSRC
Royal Society
Introduction
Angular momentum polarization

Photodissociation

\[\text{ABC} \ + \ h\nu \ \rightarrow \ A(j) \ + \ BC(v', j') \]

Angular momentum can be polarized

Measure angular distribution of \(j \) or \(j' \)
Electronic angular momentum polarization

Molecular photodissociation
Electronic angular momentum polarization

Molecular photodissociation

\[hv \]
Electronic angular momentum polarization

Molecular photodissociation

\[h\nu \]
Electronic angular momentum polarization

Molecular photodissociation

hv

v'

j'
How?

\[\text{Cl}_2 + h\nu \rightarrow \text{Cl}(^2P_j) + \text{Cl}(^2P_j) \]

Dependence on laser polarization and probe transition
Motivation

Electronic polarization

- Insight into electronic motion
- Helps assignment of dissociation mechanism
- Complementary information to translational anisotropy
- Atmospherically important processes
\[
\text{O}_2 + h\nu \rightarrow \text{O}(^{3}P_J) + \text{O}(^{3}P_J)
\]

\[\lambda = 193 \text{ nm}\]

Andrew Clark
Fabio Quadrini
Raluca Cireasa
Gerrit C. Groenenboom
Issues to consider

- Measure polarization of \(J \)
- Polarization of both \(L \) and \(S \) in exit channel is possible
- Theoretically tractable system
- \(\text{O}_2 \) is a well-characterized system
- Extend data to 193 nm
Potential energy curves

Continuum contribution - 95% Herzberg I

\[A(3\Sigma_u^+) \leftarrow X(3\Sigma_g^-) \]

Photodissociation (20% O$_2$ seeded in He...)

...followed by (2+1) REMPI of O(3P_J) around 225 nm
O(3P_2) ion images and moments

Dependence on pump-probe laser geometry

Fit to moments using basis function method

Potential curves‡

Including spin-orbit coupling

Previous semi-classical theory ‡

Includes various couplings between potential curves

Neglects coherence effects during excitation and dissociation

Incoherent alignment

Semi-classical theory\(^†\) reproduces trends.

\[J = 1 \quad J = 2 \]

\[\lambda \text{ / nm} \]

\[\lambda \text{ / nm} \]

Coherent excitation: a crude estimate

Determine phase difference between $||$ and \perp channels

Orientation

Alignment

\[\text{OCS} + h\nu \rightarrow \text{S}(^1D_2) + \text{CO}(^1\Sigma^+) \]

\[\lambda = 248 \text{ nm} \]

Fabio Quadrini (see Poster)
Raluca Cireasa
Absorption Spectrum

Red tail of the first absorption band

Adapted from J.W. Rabalais *Chem. Rev.* (1971)
Issues to consider

- Atomic angular momentum only arises from L
- Coproduct (CO) is closed-shell
- Can polarization of L help in assigning mechanism(s)?
- How does polarization vary with dissociation pathway?
$S^{(1D_2)}$ Ion images

Photodissociation (\lesssim1% OCS seeded in He)....

...followed by (2+1) REMPI probing of $S^{(1D_2)}$ around 290 nm
$S(^1D_2)$ speed and anisotropy distributions

Bimodal speed distribution

Source of bimodality

Major fast channel: Dissociation on the $2^1\Sigma^+ (^1\Pi)$ and $1^1\Sigma^\prime\prime (^1\Pi)$ states.

Minor slow channel: Nonadiabatic transition to ground $1^1\Sigma^+$ state.

Adapted from Suzuki and coworkers *J. Chem. Phys.* (1998)
Comparison with Suzuki and coworkers

Major channel: f_{rot} changes with dissociation wavelength

Minor channel: f_{rot} constant with dissociation wavelength

Channel dependent polarization

Major channel: strongly polarized ($K = 4$ component very important).

Minor channel: less strongly and differently polarized.
Speed averaged polarization parameters at 248 nm

Moments with \(K = 1 \) through to \(K = 4 \)

<table>
<thead>
<tr>
<th>Polarization parameter</th>
<th>average</th>
<th>Slow (18%)</th>
<th>Fast (82%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta(v))</td>
<td>0.078</td>
<td>0.734</td>
<td>-0.019</td>
</tr>
<tr>
<td>(\alpha_1(v))</td>
<td>0.004</td>
<td>-0.003</td>
<td>0.006</td>
</tr>
<tr>
<td>(\gamma_1(v))</td>
<td>0.085</td>
<td>0.085</td>
<td>0.085</td>
</tr>
<tr>
<td>(\gamma'_1(v))</td>
<td>0.024</td>
<td>0.012</td>
<td>0.025</td>
</tr>
<tr>
<td>(s_2(v))</td>
<td>-0.049</td>
<td>0.007</td>
<td>-0.057</td>
</tr>
<tr>
<td>(\alpha_2(v))</td>
<td>-0.003</td>
<td>0.022</td>
<td>-0.007</td>
</tr>
<tr>
<td>(\gamma_2(v))</td>
<td>-0.021</td>
<td>-0.040</td>
<td>-0.018</td>
</tr>
<tr>
<td>(\eta_2(v))</td>
<td>0.024</td>
<td>0.025</td>
<td>0.023</td>
</tr>
<tr>
<td>(\alpha_3(v))</td>
<td>0.019</td>
<td>-0.010</td>
<td>0.024</td>
</tr>
<tr>
<td>(\gamma_3(v))</td>
<td>0.090</td>
<td>0.071</td>
<td>0.092</td>
</tr>
<tr>
<td>(\gamma'_3(v))</td>
<td>0.011</td>
<td>0.141</td>
<td>-0.006</td>
</tr>
<tr>
<td>(s_4(v))</td>
<td>-0.029</td>
<td>-0.004</td>
<td>-0.033</td>
</tr>
<tr>
<td>(\alpha_4(v))</td>
<td>-0.008</td>
<td>0.011</td>
<td>-0.011</td>
</tr>
<tr>
<td>(\gamma_4(v))</td>
<td>0.022</td>
<td>0.000</td>
<td>0.026</td>
</tr>
<tr>
<td>(\eta_4(v))</td>
<td>-0.019</td>
<td>0.003</td>
<td>-0.022</td>
</tr>
</tbody>
</table>

Fast and slow components differently polarized
J- and electron-hole distributions

Fast component

Note: $z \parallel v$ and zx plane contains ϵ
Potential energy curves

Fast component

Dissociation on state of Π symmetry at linearity.

Long range potentials

Angular dependence of electrostatic potentials

Quadrupole-quadrupole interaction

Predicted polarization parameters: fast component

Supports dissociation mainly on $^{2}\text{A}^\prime$ state.

\[\rho_{20} \quad \cdots \cdots \quad \rho_{21} \quad \cdots \cdots \quad \rho_{22} \]

Calculations neglect coherence effects and averaging over Jacobi angle γ.

Predicted polarization parameters: slow component

Dissociation via seam of intersection

Predicted polarization parameters: slow component

Supports dissociation via ground $1^1A'$ state.

\[
\begin{align*}
\rho_{20} & \quad \cdots \cdots \quad \rho_{21} \\
\rho_{22} &
\end{align*}
\]

Experimental

Calculated

CO rotation smears out polarization.

Calculations neglect coherence effects and averaging over Jacobi angle γ.
Summary

- Large orbital polarization observed at 248 nm.
- All polarization moments determined, including up to \(K = 4 \).
- Contributions from \(K = 4 \) moments are significant.
- Polarization is different for fast and slow \(S(^1D_2) \).
- Polarization reflects different dissociative pathway.
- Further theoretical work is needed interpret polarization.
OCS + h\nu \rightarrow S(^3P_J) + CO(^1\Sigma^+) \\

\lambda = 248 \text{ nm} \\

Fabio Quadrini (see Poster) \\
Raluca Cireasa
Issues to consider

- Minor 5% channel
 (Houston and coworkers, *Chem. Phys. Lett.* (1993))

- Both L and S involved.

- Can polarization of J still provide helpful information?

- Test out using OCS at 248 nm.

- Help assign dissociation mechanism for $S(^3P_J)$ formation.
$S(^3P_J)$ images and moments

Moment analysis

Fit using basis function method
$S(^3P_J)$ speed and anisotropy distributions

J-dependent speed and anisotropy distributions

Spin-orbit populations $P(J = 2 : 1 : 0) = 8 : 3 : 1$

At 1500 m s$^{-1}$ $\beta(v)$ for each J close to that for slow $S(^1D_2)$ channel.
Potential energy curves

Intersystem crossing pathways

ISC from ground state involves $1^3A'(3\Pi)$ state (c.f. collisional quenching)

$S(^3P_2)$ speed and anisotropy distributions

Comparison with the singlet channel

$S(^3P_2)$ may arise from ISC from the ground state (consistent with $\beta(\nu)$)
Potential energy curves

Implies intersystem crossing from the ground $1^1A'(1\Sigma)$ state

Higher kinetic energy release (c.f. dissociation on ground singlet state)

Molecular frame J-polarization

$J = 2$ and $J = 1$ are differently polarized

Need to consider coupling of L and S during dissociation.
Adiabatic versus diabatic models

Two sources of angular momentum, L and S

Only know polarization of J

\[J = 1 \quad J = 2 \]

Sudden recoupling of S and L is inappropriate in this case.
Potential energy curves

$S(^3P_J)$ motion is relatively slow through the recoupling zone

Spin-orbit populations and speed distributions are non-statistical

$S(^3P_2)$ J-distribution

Preferential population of $M_J = \pm 1, \pm 2$

Consistent with adiabatic dissociation *via* lowest $^3A'$ state.

Note: $z\parallel v$ and zx plane contains ϵ
Potential surfaces and ISC

Dissociation via ISC between ground singlet and triplet states

Probability of ISC on ground state must be quite high

Summary

• S^3P_J channel extremely complex.

• Speed and anisotropy data are J-dependent.

• S^3P_2 data suggests an ISC pathway via ground state.

• Polarization data seems to support this interpretation.

• Further theoretical work required particularly for triatomics.
The end