
CHEMICAL REACTION RATES Dr M. BROUARD

Trinity Term 2003 8 Lectures

Scope of Lectures

A) Bimolecular Reaction Rates 5 Lectures

B) Unimolecular Reaction Rates 3 Lectures

Relevance to other Lecture Courses

Kinetics and Mechanism
Modern Liquid Kinetics
Interfacial Kinetics
Photochemistry and Energy Transfer
Atmospheric Chemistry
Dynamics of Molecular Collisions

A) BIMOLECULAR REACTION RATES

1) Why bother?

k(T ) = A e−Ea/RT (1)

• What determines the magnitudes of A and Ea?

• Can these parameters be calculated a priori?

• When (and why) does equation 1 break down?

H + D2 −→ HD + D
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Simple Collision Theory (SCT) (Pilling and Seakins, p61 box 3.1)

Key ideas

• Reactions occur by collisions1

• Collision energy2 (Et) must exceed the barrier height (E0)

Reaction rate = Collision rate × fraction of collisions with Et > E0

Reaction rate −d[A]
dt

= k(T ) [A] [B]

Collision rate Z0
AB [A] [B]

1Reactants are structureless spheres, with radii rA and rB and collision diameter
d = rA + rB

2The collision energy is the translational energy associated with relative motion

Et = 1
2
µc2

rel µ =
mAmB

mA + mB

where crel is the relative speed (crel = vB − vA).

Z0
AB is the collision number

Z0
AB = c̄rel σc c̄rel =

(

8kBT

πµ

)1/2

and

σc = πd2

is the collision cross-section.

Fraction of collisions with Et > E0 e−E0/RT

The thermal rate coefficient is therefore

kSCT (T ) = c̄rel σc e−E0/RT (2)
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Simple collision theory versus experiment 3

ASCT = c̄relσc

Reaction T/ Ea/ 10−11 Aexpt/ 10−11 Asct P

K kJ mol−1 dm3mol−1s−1 dm3mol−1s−1

K+Br2 → KBr+Br 600 0 10.0 2.1 4.8
CH3+CH3 → C2H6 300 0 0.24 1.1 0.22
2 NOCl → 2 NO+Cl2 470 102 0.094 0.59 0.16

→ 500 83 1.5 × 10−5 3.0 5.0 × 10−5

H2+C2H4 → C2H6 800 180 1.2 × 10−5 7.3 1.7 × 10−6

Implies the reaction cross-section, σr, might be better written

σr = P σc

where P is the probability of reaction on collision or the steric factor.

3In the table of data the activation energies have been experimentally determined
using

d ln k

dT
=

Ea

RT 2
(3)

The collision cross-sections σc = πd2 are taken from viscosity data.

General approach to calculating rate constants

Need to think about reactive collisions in more detail.

POTENTIAL ENERGY SURFACE

FORCES ON NUCLEI

MOTIONS OF NUCLEI

CLASSICAL MECHANICS QUANTUM MECHANICS

simple collision theory

transition state theory

3



Collisions between two Atoms and Potential Energy Curves
(See Valence Lectures)

Separate the electronic and nuclear motions of atoms A and B (Born-
Oppenheimer approximation)

ψtot(r, R) = ψel(r;R)ψn(R)

Solve the Schrödinger equation for the electronic motion

ĤeΨe = V (R)Ψe

The potential energy curve, V (R), for an electronic state is the
dependence of the electronic energy on A–B nuclear separation,
R.

Ĥnψn(R) = Enψn(R)

En = hν(v + 1
2
) + · · ·

Below the dissociation limit the vibrational levels of AB can be calculated
from V (R) (see J.M Brown, Molecular Spectroscopy Primer).

Force, F (R), acting on the particles at separation R

F (R) = −
dV (R)

dR

For specified initial positions and velocities of the atoms, their motion dur-
ing the collision is calculated classically using Newton’s Laws.

Head on collision
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Glancing blow collisions

b is known as the impact parameter (defined as the distance of closest ap-
proach of the atoms in the absence of an interaction potential)

It determines the magnitude of the orbital angular momentum of the colli-
sion4

|`| = µcrelb

In the absence of a third species, which could remove the excess energy and
stabilize the AB molecule via a secondary collision, only elastic scattering
occurs in an atom-atom collision.

4Quantum mechanically the orbital angular momentum |`| = ~
√

L(L + 1).

Collisions between molecules and Potential Energy Surfaces

For the simplest chemical reaction

H + H2 −→ H2 + H

the potential energy will depend on three coordinates, (r1, r2, θ),

The resulting potential energy function, or surface, has the following form,
plotted as a function of r1 and r2 at two fixed values of the bond angle θ:
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The PES provides information on the barrier height to reaction. Vibrational
force constants and vibrational frequencies can also be determined (see
lectures 3 and 4).

As with atom-atom collisions, once the potential energy surface (PES) is
known, the forces on the particles can be calculated (lecture 2).

Reaction Coordinate and the Reaction Barrier

The reaction coordinate is the minimum potential energy pathway (MEP)
from reactants to products.

The potential energy barrier, V ‡, is the maximum potential energy along
the reaction coordinate.5

The barrier is a saddle point on the potential energy surface, and may be
thought of as a bottleneck through which reactants must pass if they are
to proceed to form products.

5V ‡ is sometimes referred to as the classical barrier height because it does not include
vibrational zero-point energy (see lectures 2 and 3)
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2) Molecular Collisions

Classical motion over the potential energy surface

Solving the classical laws of motion for a set of initial conditions (the ini-
tial positions and velocities or momenta of each atom) yields the classical
trajectory of the particles.

The two trajectories, shown in different ways in the figures above and below,
represent examples of an inelastic (energy transfer) collision and a reactive
collision:

Types of Potential Energy Surface

Direct reactions with barriers

F + H2 −→ HF + H

Reactions with deep potential energy wells (lectures 6 to 8)

O(1D) + H2 −→ OH + H
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In practice, many (∼ 106) trajectories, corresponding to different initial
conditions, are needed to obtain accurate value for k(T ).6

6This method of calculating k(T ) is usually referred to as the classical trajectory

method.

The Reaction Probability

Not all collisions lead to reaction.

Collisions with different angles of approach, γ, and impact parameters, b,
have different probabilities of reaction, P (b, γ).

(See Pilling and Seakins p65 for a modified version of simple collision theory
which accounts for the angle dependence of the reaction barrier.)
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Reaction Cross-sections

The reaction cross-section can be expressed as an integral of the reaction
probability over impact parameter.

σr =

∫ bmax

0

P (b) 2πb db . (4)

P (b), is known as the opacity function. It can be calculated using the
classical trajectory method, by running trajectories at different impact pa-
rameters.

P (b) =
Nreactive(b)

Ntotal(b)

Head-on collisions tend to be more reactive than glancing-blow collisions.

Cross-section dependence on collision energy

Reaction cross-sections usually vary with collision energy, εt.

For a reaction with a barrier, collisions at high collision energy are more
reactive than those at low collision energy

The rate constant for a reaction should therefore be obtained from reaction
cross-sections by evaluating the Maxwell-Boltzmann average of crel σr(εt):

k(T ) =

∫ ∞

0

crel σr(εt) f(εt) dεt

(See Pilling and Seakins pp 61-65)
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Cross-section dependence on rovibrational state

Trajectories over two different surfaces illustrating that the reaction cross-
sections can also depend on the reactant molecule vibrational (and rota-
tional) state.

The reaction barrier is a bottleneck through which trajectories must pass
if products are to be formed: motion of the reactants along specific coordi-
nates is required if reaction is to occur.

State-specific to thermal rate constants

A + BC(i) −→ AB + C

The thermal rate constant may be written as a reactant Boltzmann popu-
lation (Pi) weighted sum over state-specific rate constants, ki(T ):

k(T ) =
∑

i

Pi ki(T ) (5)

An example of a reaction showing strong vibrationally dependent reaction
rate constants will be discussed in lecture 4.
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A Reaction Movie

A quantum mechanical movie of a reaction taking place
(Althorpe J. Chem. Phys. 114 1601 (2001))

H + D2 −→ HD(v′ = 0, j′ = 0) + D

(See 3rd Year Lectures on the Dynamics of Molecular Collisions)
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3) Transition State Theory7

Why develop an approximate theory?

• Rigorous QM calculations only possible for N ≤ 4

• For N ≥ 4 classical trajectory calculations are also time-consuming

• Both require knowledge of the full Potential Energy Surface

• Simple collision theory doesn’t work

The key advantage with transition state theory is that you only need to
know the PES at the transition state.

7Simpler derivations of transition state theory which employ the quasi-equilibrium

hypothesis appear in many of the recommended texts (e.g., Pilling and Seakins, p66),
and in the ‘Applications of Statistical Mechanics’ lecture course next year.

The Reaction Coordinate

A + BC −→ ABC‡ −→ AB + C

Motion orthogonal to the minimum energy path (MEP) corresponds to
conventional (symmetric) stretching and bending vibrations of ABC.

Motion along MEP corresponds to translational motion over the barrier.
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Reaction rate constants and probabilities

REACTION IN ONE DIMENSION

The rate of reactant approach (the number per unit length per sec) at
relative velocities between c→ c+ dc

d Rate = nAnBC c f(c)dc

where f(c) is the 1-D Maxwell-Boltzmann distribution of relative velocities.

The reaction rate is the approach rate times the probability of reaction at
a given collision energy, P (εt)

d Reaction Rate = nAnBC P (εt) c f(c)dc

Hence the thermally averaged reaction rate is

−
dnA

dt
= nAnBC

∫ ∞

0

P (εt) c f(c)dc

Thus, the rate constant in one dimension is

k(T ) =

∫ ∞

0

P (εt) c f(c)dc

This can be written in terms of kinetic energies

k(T ) =

∫ ∞

0

P (εt) f(εt)
dεt
µ

where εt = 1
2
µc2,

f(εt) =
µ

hqt
e−εt/kT

and qt is a 1D translational partition function per unit length:

qt =

(

2πµkT

h2

)1/2

with µ =
mAmBC

mA +mBC

qt represents the number of thermally accessible translational states per
unit length at temperature, T .

Substitution into the expression for k(T ) yields8

k(T ) =
1

h qt

∫ ∞

0

P (εt) e−εt/kT dεt (6)

8Note that equation 6 is dimensionally correct for a rate constant in 1D (m molecule−1

s−1).
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REACTION (A+BC) IN MANY DIMENSIONS

A and BC approach in specific quantum states - equation 6 applies to each
quantum state, weighted by the Boltzmann population for the molecules in
those states:

k(T ) =
1

h qt

∫ ∞

0

∑

n

Pn(εt)
gne−εn/kT

qA:int qBC:int

e−εt/kT dεt (7)

where gn is the degeneracy of state n, and 9

qA:int = qA:el and qBC:int = qBC:rot qBC:vib qBC:el

with

qt =

(

2πµkT

h2

)3/2

9The internal partition function for atom A is simply the electronic partition function,
which is usually just given by the electronic degeneracy of the ground state.

This equation is usually written more compactly as:

k(T ) =
1

hq

∫ ∞

0

N(ε) e−ε/kT dε (8)

where

N(ε) =
∑

n

gn Pn(ε) with ε = εt + εn ,

and q is the total reactant partition function (qt qA:int qBC:int).

N(ε) is called the cumulative reaction probability10.

Equations 7 and 8 are exact provided the reactants are in thermal equilib-
rium.

10The sum of reaction probabilities N(E) includes reactant orbital angular momentum
quantum states, labeled with quantum number L with degeneracy 2L + 1. In transition
state theory this motion is accounted for via the rotational partition function of the
transition state.
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The Transition State

Transition state theory provides an approximate expression for N(ε).

The transition state is a bottleneck on the PES through which reactants
must pass if they are to form products.11

The assumptions of transition state theory are:

1. The reactants are in thermal equilibrium (as assumed in the preceding
section)

2. Motion along the minimum energy path is separable from motion
orthogonal to it

3. Motion along reaction coordinate is classical

4. Motion along the minimum energy path is direct. (This is often re-
ferred to as the no re-crossing rule - see K. Laidler p116.)

11It is formally defined as a dividing surface on the PES separating reactants from
products, and is usually located at the top of the barrier

The Transition State Theory expression for k(T )

From assumption 2 the total energy at the transition state may be written

ε = ε‡t + ε‡n + ε0

ε0 is the difference in zero-point energies between the reactant and transition
state.

Assumptions 3 and 4 imply

Pn(ε‡t) = 1 if ε‡t > 0
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Substitution into equation 7, changing the variable of integration to ε‡t,
yields

k(T ) =

∑

n g
‡

n e−ε‡n/kT

h qt qA:int qBC:int

e−ε0/kT

∫ ∞

0

e−ε‡
t
/kT dε‡t (9)

Evaluating the integral over translational energies yields

k(T ) =
kT

h

q‡int

qt qA:int qBC:int

e−ε0/kT (10)

where 12

q‡int = q‡rot q
‡

vib q
‡

el and qt =

(

2πµkT

h2

)3/2

≡

[

q‡t
qA:t qBC:t

]−1

and

qBC:int = qBC:rot qBC:vib qBC:el

In terms of the total molecular partition functions of the transition state
and reactant molecules this expression can be rewritten more simply

k(T ) =
kT

h

q‡

qA qBC

e−ε0/kT (11)

k(T ) has units of m3molecule−1s−1.

12Note that q‡

vib excludes the ‘vibrational’ or ‘translational’ degree of freedom corre-
sponding to motion along the reaction coordinate.

Recombination of two atoms - simple collision theory revisited13

A + B −→ AB‡ −→ products

For the transition state

q‡int = q‡rot =
kT

B‡

B‡ =
h2

8π2µd2
where d = rA + rB

The single ‘vibrational’ mode of AB‡ is the reaction coordinate, and hence
is not included in q‡

int.

For the reactants

qt =

(

2πµkT

h2

)3/2

≡

[

q‡t
qA:t qBC:t

]−1

and qA/B:int = 1

Substitution into equation 10 yields

k(T ) =

(

8kT

πµ

)1/2

πd2 e−ε0/kT (12)

This is the same expression as simple collision theory.

13For the reaction to occur, the excited AB product must be stabilized by collisions
with a high pressure of an added bath gas - see lectures 6 - 8.
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Summary of expressions for partition functions

Motion Symbol Degrees of Partition Order of
Freedom Function Magnitude

Translation qA:t 3
(

2πmAkBT
h2

)3/2
1030 - 1033 m−3

Rotation (Linear) qBC:rot 2 kBT
σhcB 101 - 102

Rotation (Non-linear) qABC:rot 3 1
σ

(

kBT
hc

)3/2
(

π
ABC

)1/2
102 - 103

Vibration (Linear) qABC:vib 3N − 5
∏3N−5

i qi
vib 1-10

Vibration (Non-linear) qABC:vib 3N − 6
∏3N−6

i qi
vib 1-10

TS Vibration (Linear) q‡

vib 3N − 6
∏3N−6

i qi
vib 1-10

TS Vibration (Non-linear) q‡

vib 3N − 7
∏3N−7

i qi
vib 1-10

Electronic qBC:el —
∑

i gie
−εi/kBT g0

qi
vib =

(

1 − e−hcνi/kBT
)−1

Rotational constants, A,B and C, and vibrational frequencies, ν, expressed in

cm−1.
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4) Applications of Transition State Theory

Estimating the Steric Factor

TST can be used to estimate the steric factor.

TST for A + B → AB is the same as SCT (lecture 3)

ksct(T ) ∼
kT

h

q2
rot

q3
t

e−ε0/kT

Here the partition functions have been re-defined as partition functions per
degree of freedom, (i.e. q2

rot = (kT/σB‡).

For AB + CD → ABCD‡ → products proceeding via a non-linear ABCD‡

transition state

ktst(T ) ∼
kT

h

q3
rotq

5
vib

q3
t q

4
rotq

2
vib

e−ε0/kT

The steric factor is

p =
ktst(T )

ksct(T )
∼

(

qvib

qrot

)3

Using the order of magnitude estimates of the partition functions (lecture
3)

p =

(

qvib

qrot

)3

∼ 10−2 − 10−4

Generally, the estimated steric factor falls with increasing reactant com-
plexity.

Detailed calculation of thermal rate constant

H + D2 −→ HD + D

k(T ) =
kT

h

q‡int

qt qH:int qD2:int

e−ε0/kT

The transition state is linear.

Parameter Reactants (D2) Transition State

re, HD/Å — 0.93
re, DD/Å 0.741 0.93
Potential energy V ‡/kJ mol−1 0.0 39.91
Frequencies/cm−1

Stretch 3109 1762
Bend (doubly degenerate) — 694
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At 300 K:

ε0 = V ‡ + εHDD
z − εDD

z

= 39.91 + 18.84 − 18.59 = 40.16 kJ mol−1

e−ε0/kBT = 1.02 × 10−7

kBT

h
= 6.25 × 1012 s−1

qt =

(

2πµkBT

h2

)3/2

= 6.99 × 1029 m−3

For the transition state

I‡ =
m1m2 + 4m1m3 +m2m3

M
r‡ 2

e = 4.02 × 10−47 kg m2

B‡ =
~

2

2I‡
= 1.38 × 10−22 J molecule−1

q‡rot =
kBT

B‡
= 30.0

q‡vib =
∏

i

(

1 − e−hνi/kBT
)−1

= 1.0002 · (1.037)2 = 1.076

For the reactants14

ID2
= 9.14 × 10−48 kg m2

BD2
=

~
2

2ID2

= 6.08 × 10−22 J molecule−1

qD2:rot =
kBT

2B
= 3.41

qD2:vib =
(

1 − e−hν/kBT
)−1

= 1.00

14The assumption that one can employ the high temperature expression for the rota-
tional partition functions leads to a relatively small error at 300 K

Substitution into the expression for k(T) yields

k(T ) = 8.46 × 10−17e−ε0/kBT

= 8.63 × 10−24 m3molecule−1s−1

≡ 8.63 × 10−18 cm3molecule−1s−1

k(T = 300 K)/10−17 cm3 molecule−1 s−1

Experimental 2.1
Transition state theory 0.86
Quantum mechanics 1.9
Classical mechanics 1.8

The discrepancy between TST and experiment is due to neglect of tunneling
in TST (see below).
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Tunneling Corrections

Motion over the barrier cannot always be treated classically

Transmission probability for a square potential energy barrier 15

T =
ψ(b)2

ψ(a)2
∼ e−2k(b−a) k =

√

2µ(V ‡ − εt)/~2

where b − a is the barrier width, V ‡ is the barrier height, and εt is the
collision energy.

Tunneling is most important for light particles passing through thin barriers

Tunneling is most apparent at low temperatures.

15(This is an approximate expression valid when k(b− a) � 1. See last problem sheet
of the Quantum Mechanics lecture course and Atkins and Friedman, Molecular Quantum
Mechanics

Failings of Transition State Theory

TST assumes that (the classical) motion along the minimum energy path
is direct, i.e. there is no recrossing 16.

The importance of recrossing trajectories depends on the shape of the po-
tential energy surface, the total energy and the masses of the species in-
volved.

Re-crossing of the transition state is a minor problem at room temperature
for reactions with substantial barriers (left figure).

When re-crossing is important, TST yields an upper-bound to the classical
rate constant.

16TST also assumes the reactants are in thermal equilibrium. This assumption is gen-
erally valid in bulk kinetic studies, where the pressures are sufficiently high to ensure that
the rate of inelastic collisions, which serve to restore the system to thermal equilibrium,
is greater than the rate of reactive collisions.

20



Temperature Dependence of rate constants

Consider an A + BC reaction proceeding via a linear transition state.

k(T ) =
kT

h

q‡rot
qt qBC:vib qBC:rot

e−E0/RT

Assume the vibrational partition functions are unity, and extract the tem-
perature dependence of the rotational and translational partition functions

k(T ) ' C T 1 T 1

T
3
2 T 1

e−E0/RT

= C T−
1
2 e−E0/RT

In general, the temperature dependence of the bimolecular rate constant
will have the form

k(T ) = C T n e−E0/RT

From the definition of the activation energy, one obtains

d ln k(T )

dT
=
nRT + E0

RT 2
=

Ea

RT 2
,

i.e.

Ea = E0 + nRT

Often E0 � RT , and the temperature dependence of k(T ) is dominated by
E0.

Non-Arrhenius Behaviour

Tunneling through the reaction barrier can cause curvature in the Arrhenius
plot.

The temperature dependence of the partition functions appearing in the
A-factor can also cause curvature. This is important when E0 . nRT ,
e.g.,17

OH + CO −→ HOCO∗ −→ H + CO2

Radical recombination reactions also have E0 ∼ 0 - see lectures 6-8)

17This reaction proceeds via an energized HOCO∗ complex. The unusual temperature
dependence arises from the competition between dissociation of HOCO∗ back to reac-
tants and dissociation to form products. The rate of latter increases rapidly with temper-
ature because the vibrational partition functions for the low frequency vibrational modes
of the second transition state increase rapidly with temperature. Tunneling through the
second barrier may also be important.
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Non-Arrhenius Behaviour

Also arises if the rate constant displays a marked dependence on reactant
quantum state:

OH + H2(v = 0, 1) −→ H2O + H

Vibrational excitation of the H2 to v = 1 increases the rate constant by
over a factor of 100 (i.e. k1(T ) � k0(T )).18

k(T ) = P0 k0(T ) + P1 k1(T ) with Pv =
e−∆εv/kBT

qH2:vib

The reaction barrier occurs late along the reaction coordinate once the H—
H bond is stretched (i.e. the PES has a ‘late barrier’ - see lecture 2).

18Vibrational excitation of the ‘spectator’ OH reactant has very little effect on the
reaction rate.

The curvature for this reaction is reasonably well accounted for by TST
once a tunneling correction is made.

Better agreement between TST and experiment can be obtained by varying
some of the TS vibrational frequencies. This procedure is often used to
extrapolate experimental data to very low or very high temperatures.
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Isotope Effects

Transition state theory provides a reliable estimate of the kinetic isotope
effect

ln
kH

kD

= ln
AH

AD

−
Ea H − Ea D

RT
,

Ea D/H are the activation energies of the reactions with and without isotopic
substitution.

The second term often dominates (Ea H − Ea D ' E0 H − E0 D).

An upper bound to the kinetic isotope effect may be obtained assuming
that the zero point energies of the transition state species are insensitive to
isotopic substitution 19

(Ea H − Ea D) ' (E0 H − E0 D) ' (Ez D − Ez H)

The difference in activation energies is then approximately the difference in
the reactant zero point energies EzH/D.

19This will be the case if the bond involving the deuterium substitution is significantly
weakened in the transition state
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5) Thermodynamic Formulation of TST

Why bother?

k(T ) =
kT

h

q‡

qA qBC

e−ε0/kT

• TS structure and vibrational frequencies may not have been calculated

• For reactions in solution the partition functions are not simply defined
(e.g., what about the role of the solvent?)

Is there a simpler expression for k(T ) in terms of thermodynamics func-
tions?

Thermodynamics

Transition state theory employs partition functions per unit volume20.

Need to express these partition functions in terms of the thermodynamic
functions, entropy and enthalpy.

For an ideal gas (see Statistical Mechanics Lecture Course and Atkins)

S =
U − U(0)

T
+ k lnQ

where U(0) is the internal energy at absolute zero (i.e. the zero-point energy
of the N particles) and

Q =
qN

N !

Here q is the usual (dimensionless) molecular partition function.

The standard molar entropy of an ideal gas can then be written (using
Stirling’s approximation)

S◦− =
U◦− − U◦−(0)

T
+R ln

q◦−

NA

+R

20This originates from the fact that rates are proportional to reactant concentrations
not reactant partial pressures
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For an ideal gas

H = U + PV = U +NkT

and

H(0) ≡ U(0)

Therefore the equation for the entropy may be rewritten

S◦− =
H◦− −H◦−(0)

T
+R ln

q◦−

NA

The partition function per unit volume q′ and q◦− are related by the expres-
sion:

q◦−

NA

= q′
V ◦−

NA

= q′
kBT

p◦−

and therefore in terms of thermodynamics functions q′ can be written 21:

q′ =
q◦−

V ◦− =
kBT

p◦−
eS◦−/R e

−
(

H◦−−H◦−(0)
)

/RT
(13)

21In many kinetics texts, the standard state is taken as unit concentration (c◦− =
1.0 mol dm−3). If this convention is used then the same standard state must also be
employed when evaluating the thermodynamic functions. Here, however, we will employ
the correct thermodynamic standard state of p◦− = 105 Pa.

Kinetics

For A + BC reaction in the gas phase (equation 10)

k(T ) =
kT

h

q‡

qA qBC

e−ε0/kT

Multiplying this equantion by NA converts k(T ) into units of m3 mol−1 s−1.
Then, using NAε0 ≡ ∆‡U◦−(0) and equation 13 (dropping the primes) 22

k(T ) =
RT

p◦−
kT

h
e∆‡S◦−/R e−∆‡H◦−/RT (14)

∆‡H◦− Enthalpy of activation

∆‡S◦− Entropy of activation

Note that k(T ) has the units of m3 mol−1 s−1, and the standard state for
evaluating ∆‡H◦− and ∆‡S◦− is p◦− = 105Pa above).

22This equation can be rewritten

k(T ) =
RT

p◦−
kT

h
e−∆‡G◦−/RT

i.e. (given ∆G◦− = −RT ln K)

k(T ) =
RT

p◦−
kT

h
K‡

This suggests the alternative derivation of equation 14 (found in most texts), which is
based on the (questionable) assumption of a quasi-equilibrium between reactants and
transition state

A + BC 
 ABC‡ → AB + C
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Comparison with the Arrhenius equation

For a bimolecular reaction involving ideal gases

∆‡H◦− = ∆‡U◦− + ∆nRT

with ∆n = −1.

The activation energy is calculated from

RT 2 d ln k(T )

dT
= Ea

by substituting the TS expression for k(T )

k(T ) =
RT

p◦−
kBT

h
e∆‡S◦−/R e−∆‡H◦−/RT

This yields

Ea = ∆‡H◦− + 2RT

or

∆‡H◦− = Ea − 2RT

Thus

k(T ) = e2 RT

p◦−
kBT

h
e∆‡S◦−/R e−Ea/RT . (15)

The entropy of activation

∆‡S◦− = S ◦−‡ −S
◦−
A −S

◦−
BC

where S ◦−‡ is the entropy of the transition state 23

The entropy of activation represents the change in entropy in going from
the reactants to the transition state.

For gas phase bimolecular reactions ∆‡S◦− < 0, reflecting the loss of transla-
tion entropy on forming a single transition state species from two separate
reactants.

The A-factor from simple collision theory (lectures 3+4) yields an entropy
of activation of about −50.0 J K−1mol−1.

More negative values (reflecting a larger decrease in entropy on forming the
TS) imply a lower A-factor than predicted by simple collision theory.

23S ◦−
‡ excludes the entropy associated with motion along the reaction coordinate.
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Unimolecular Reactions and Reactions in Solution

[Aside]

For unimolecular reactions in the gas phase (in the high pressure limit - see
Lectures 6-8), an analogous derivation yields

k(T ) = e1 kT

h
e∆‡S◦−/R e−Ea/RT (16)

For activation controlled solution phase reactions (see Modern Liquid Ki-
netics lecture course and Pilling and Seakins, pp155-156), either equation
16 is employed, or the equivalent expression 24

k(T ) =
1

c◦−
kT

h
e∆‡S◦−/R e−∆‡H◦−/RT (17)

where c◦− is usually taken as 1.0 mol dm−3, and at constant pressure

∆‡H◦− = ∆‡U◦− + P∆‡V ◦− ∼ ∆‡U◦−

In solution, the thermodynamic functions of activation in these expressions
include the entropic and enthalpic terms associated with encounter pair
formation.

24However, note that for solutions, the equations for the canonical and molecular
partition functions employed in the preceding sections are no longer valid, and equation
17 is written down more by analogy with the gas phase expressions.

Applications - thermochemical kinetics

H + C2H6 −→ C2H
‡

7 −→ H2 + C2H5

Estimate the A-factor for this gas phase reaction reaction at 400 K.

Use C2H6 as a ‘model’ on which to base calculation of S ◦−
‡ (i.e. S◦− for

C2H
‡

7).

∆‡S◦− = S ◦−‡ −S
◦−
H −S

◦−
C2H6

1. Translational Contribution to S ◦−
‡

mC2H6
' mC2H7

S ◦−
‡:trans' S

◦−
C2H6:trans

2. Rotational Contribution

IC2H6
' IC2H7

Reduction in symmetry on forming the TS (symmetry numbers)

σC2H6
= 6σC2H7

Thus

S ◦−
‡:rot' S

◦−
C2H6:rot +R ln 6

3. Vibrational Contribution

Neglect changes in vibrational and internal rotational partition func-
tions on forming the H—H—C structure.

S
◦−

‡:vib& S
◦−

C2H6:vib
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4. Electronic Contribution

C2H6 has a singlet ground state, that of C2H
‡

7 will be a doublet

S
◦−
‡:el' S

◦−
C2H6:el +R ln 2

A lower limit for the entropy of the TS is therefore

S ◦−‡ & S
◦−

C2H6
+R ln 2 +R ln 6

5. H atom Entropy

S
◦−
H is obtained from the Sackur-Tetrode equation25

6. Entropy of Activation

A lower limit on the entropy of activation is therefore

∆‡S◦− = S ◦−‡ −S
◦−
H −S

◦−
C2H6

& −100.06 J K−1mol−1

7. The A-factor

A lower limit for the A-factor is

A = e2 RT

p◦−
kBT

h
e∆‡S◦−/R

A ≥ 1.2 × 107 m3mol−1s−1 ≡ 1.2 × 1010 dm3mol−1s−1

The experimental A-factor is 1.0 × 1011 dm3mol−1s−1 (i.e. within a
factor of 10).

25Note that H is a 2S atom and that the standard state is 105 Pa.

Observing the Transition State Region.

Photoelectron spectroscopy of FH−
2

Measure the kinetic energies of the
ejected photoelectrons

[F − H2]
− hν
−→ [F − H2]

‡ + e−

The neutral products are produced in geometries very close to those of the
transition state for the reaction

F + H2 −→ FH + H

The spectrum suggests that the transition state is bent (see Science, 262,
(1993), 1852 ).
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B) UNIMOLECULAR REACTION RATES

Relevance

(i)Thermal Unimolecular Reactions

A + M 
 A∗ + M

A∗ −→ products

(ii)Radical Recombination

A + B 
 AB∗

AB∗ + M −→ AB + M

(iii)Chemical Activation

A + B 
 AB∗

AB∗ + M −→ AB + M

AB∗ −→ products

(iii)Photodissociation

A
hν
→ A∗ −→ products

See Photochemistry lectures

6) Thermal Unimolecular Reactions

The Lindemann Mechanism

A + M
k1−→ A∗ + M Activation

A∗ + M
k−1

−→ A + M Deactivation

A∗ k2−→ products Reaction

M is a ‘third body’ - another gas molecule in the system.

−
d[A]

dt
= k2[A

∗] = kuni[A]

i.e.

kuni =
[A∗]

[A]
k2
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Steady state approximation

−
d[A∗]

dt
= 0 [A∗] =

k1[M][A]

k−1[M] + k2

The phenomenological unimolecular rate constant is

kuni =
[A∗]

[A]
k2 =

[

k1[M]

k−1[M] + k2

]

k2 (18)

Plots of the variation of kuni with pressure are known as the fall-off curve.

(i) Limiting High Pressures (k−1[M] � k2)

kuni = k∞ =
k1

k−1

k2

(ii) Limiting Low Pressures (k−1[M] � k2)

kuni = k0 = k1[M]

Qualitatively agrees with experiment (a good thing)

Limitations with Lindemann Theory

(i) Equation 18 may be rearranged

1

kuni

=
1

k∞
+

1

k1[M]
(19)

Thus a plot of 1/kuni versus 1/[M] should be linear with slope 1/k1 and
intercept 1/k∞.
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(ii) [M]1/2 is the concentration (proportional to pressure) at which kuni =
k∞/2). From equation 19

[M]calc1

2

=
k∞
k1

Fix k∞ to the experimental value.

Use simple collision theory to calculate k1

k1 = pZ0
AM e−ε0/kT (20)

where ε0 is the energy threshold to reaction (the critical energy) and Z0
AM =

¯crelσc (the collision number).

Suggests p ∼ 108 � 1 (activation is much more efficient than expected).

Unimolecular Reaction Mechanisms

Different unimolecular reactions have different minimum energy pathways.

Isomerization

Elimination

Bond fission

How does the molecule receive and loose energy (energy transfer)?

What is an energized molecule - how does it behave?

How does the energized molecule react?
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Potential Energy Surfaces

ABC −→ AB + C

Seems likely that k2 will increase with energy.

The Energy Dependent Lindemann Scheme

A + M
k1(ε)
−→ A∗(ε) + M

A∗(ε) + M
k−1(ε)
−→ A + M

A∗(ε)
k2(ε)
−→ products

Apply the steady state approximation A∗(ε)

[A∗(ε)]

[A]
= n(ε) =

k1(ε) [M]

k−1(ε)[M] + k2(ε)

Compare with equation 18
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Contribution to kuni at energy ε is n(ε) k2(ε)

kuni =

∫ ∞

ε0

n(ε) k2(ε) dε (21)

where n(ε)dε is the fraction of A molecules in the energy range ε→ ε+ dε.

Deactivation - the Strong Collision Assumption

Deactivation tends to be efficient and vary only mildly with energy.

Strong collisions

Assume every collision renders A∗(ε) unreactive

k−1(ε) = Z0
AM

Weak Collisions

Better to treat activation-deactivation in a step-ladder fashion. Critical
parameter is average energy transferred per collision 〈∆E2〉1/2

Bath gas He Xe H2O C3H8

〈∆E2〉1/2/cm−1 215 320 820 880

Efficiency of deactivation increases with increasing complexity of molecule.
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Problems to address

In the high pressure limit there is a rapid pre-equilibrium

A + M 
 A∗(ε) + M

n(ε) =

(

[A∗(ε)]

[A]

)

≡

=
k1(ε)

k−1

=
g(ε) e−ε/kT

qA

What are the degeneracies (or density of states) g(ε)? (lecture 8)

As the pressure is decreased, the equilibrium between A∗ and A is perturbed
by the reaction.

The most highly excited A∗ molecules are preferentially depleted by reaction
(they have bigger k2).

If n(ε) changes with pressure, kuni is likely to as well (equation 21).
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7) Energy Dependent Reaction Rates

Radical recombination

A + B
ka−→ AB∗ Recombination

AB∗ k−a

−→ A + B Dissociation

AB∗ + M
kb−→ AB + M Stabilization

−
d[A]

dt
= krec[A][B]

Using steady state approximation for AB∗ yield

krec =
kakb[M]

k−a + kb[M]

(i) Low pressure

krec =
kakb

k−a

[M] 3rd order kinetics

(ii) High pressure

krec = ka 2nd order kinetics

Formal reverse of a bond fission unimolecular reaction

Kc =
krec

kuni

Chemical Activation

A + B
ka−→ AB∗

AB∗ k−a

−→ A + B

AB∗ + M
kb−→ AB + M

AB∗ kc−→ C Reaction
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Reaction rate =
d[C]

dt
= kc[AB∗]

Stabilization rate =
d[AB]

dt
= kb[M][AB∗]

Reaction rate

Stabilization rate
=

[C]

[AB]
=

kc

kb[M]

Lifetime of AB∗ =
1

k−a + kb[M] + kc

Choose process with small k−a

Vary lifetime of AB∗ by changing [M]

Evidence for the Energy Dependence Reaction Rates

Chemical Activation studies

(i) The isomerization of methylcyclopropane

a) The total reaction rate to produce the mixture of butenes increases
with energy in AB∗

b) The composition of the butene mixture is independent of the source
of the energized molecule

Implies rapid randomization (or flow) of energy within AB∗ on a timescale
shorter than that for reaction
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(ii) The dissociation of bicyclopropyl derivatives

a) At pressures ≤ 310 Torr, the product ratio I/II is invariant to pressure
(≡ [M])

b) At much higher pressures, product I dominates

Timescale for energy flow (or intramolecular vibrational redistribution or
IVR) ∼ 10−12 s.

IVR (or vibrational energy flow) is usually much more rapid than reaction

The reaction rate constant, k2(ε) (Pilling and Seakins, pp 126-128)

Illustrate ideas with RRK theory for unimolecular reactions

Distinguish between energized molecule, A∗(ε), and the activated molecule,
A‡

m

A∗(ε) −→ A‡(ε)
k‡

−→ products Overall k2(ε)
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Assumptions

• Ignore A∗ rotation

• Molecule A has s identical harmonic oscillators with energy ε

• A‡(ε) also has s identical oscillators, but energy ε0 is localized in one
vibrational mode, the reaction coordinate

• A‡ falls apart with rate constant k‡ (of the order of an inverse vibra-
tional period (∼ 10−13 s)) independent of energy

• Vibrational energy flows freely in the energized and activated species

Reaction Rate constant

k2(ε) = k‡
[A‡(ε)]

[A∗(ε)]
= k‡ r‡(ε) (22)

r‡ is the fraction of energized molecules which have energy ε0 localized in
the reaction coordinate

The RRK Expression for k2(ε) (Pilling and Seakins, p126)

RRK theory is a statistical theory of unimolecular reactions.

If energy flow is rapid and random (i.e. unrestricted or free), the vibrational
energy in A∗ will be distributed statistically26.

Statistically, the fraction of A∗ molecules with energy ε0 localized in one
bond (the reaction coordinate) is

r‡(ε) =

(

ε− ε0
ε

)s−1

Thus

k2(ε) = k‡

(

ε− ε0
ε

)s−1

ε ≥ ε0 (23)

26In this context statistical means that each microstate of the system at fixed energy is
equally accessible. The microstate refers to a specific way of distributing the vibrational
energy among the s oscillators (see lecture 8).
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Interpretation of k2(ε)

A simple statistical interpretation

• As ε increases, the probability of localizing ε0 in the reaction coordi-
nate also increases. Thus k2(ε) increases.

• Increasing s reduces the probability that one specific oscillator (the
reaction coordinate) receives enough energy, ε0, for reaction to occur.
Thus k2(ε) falls.

How does an energized molecule behave?

Molecules close to dissociation can be observed spectroscopically

Direct absorption spectroscopy (vibrational overtone spectroscopy)

Emission spectroscopy
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IVR and Free Energy Flow

When the vibrational energy is low it stays localized in the (nearly har-
monic) normal modes

As the vibrational energy is raised the motion becomes more chaotic

Chaotic motion is induced by the anharmonicity of the potential energy
surface which couples different vibrational modes 27.

Assumption of rapid IVR on the reaction timescale breaks down for small
molecules (because the vibrational motion tends to remain localized and is
not chaotic) with small reaction barriers ε0 (since these reactions will be
fast).

27It can also be promoted by coupling between the rotational and vibrational motions
of A∗

Experimental measurements of k2(ε)

(i) Vibrational Overtone Excitation

Best fit parameters:

k‡ = 5.98 × 1010 s−1

s = 5

ε0 = 11600 cm−1 from other measurements
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Does RRK theory for k2(ε) work?

• k‡ and the number of oscillators s need to be adjusted to fit experiment

• s typically takes a value s ∼ 1
2
(3N − 6)

• The assumption that all modes are harmonic and have the same fre-
quency does not work

• Rotation can play a role

Some of these problems are addressed in a more sophisticated statistical
theory called RRKM theory (See Pilling and Seakins).

Is the assumption of rapid IVR valid in this case? — Yes...

Both olefinic (CH) and methylenic (CH2) C—H stretching overtone transi-
tions were employed.

k2(ε) is independent of type of C—H mode excited.

(ii) Flash Photolysis (time-resolved)

CH2CO
hν
−→ CH2CO(S1)

Internal Conversion

−→ CH2CO(S0)
k2(ε)
−→ CH2 + CO

The last reaction step is rate determining

The CH2 product is detected using Laser Induced Fluorescence (LIF)

k2(ε) is obtained by monitoring the CH2 LIF intensity as a function of delay
time between the ‘pump’, excitation laser pulse, and the ‘probe’ LIF laser
pulse.
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8) RRK theory and beyond

The activation step and k1(ε) Pilling and Seakins pp 124-126

Recall (lecture 6) that in the high pressure limit

n(ε) =

(

[A∗(ε)]

[A]

)

≡

=
k1(ε)

k−1

=
g(ε) e−ε/kT

qA

where g(ε) is the vibrational density of states (the continuous analogue of
degeneracy).

How does the degeneracy arise?

RRK expression for k1(ε)

According to RRK theory (i.e. assuming A∗ contains s identical harmonic
oscillators)

k1(ε)

k−1

= =
1

kT

1

(s− 1)!

( ε

kT

)s−1

e−ε/kT (24)

where, within the strong collision approximation, k−1 is the collision num-
ber, Z0

AM.

εmax = (s− 1) kBT

k1(εmax)

k−1

=
1

(s− 1)!
(s− 1)s−1 e−(s−1)

kT

s εmax k1(εmax)/k−1

1 0 1/kBT
2 kBT 0.37/kBT
3 2 kBT 0.27/kBT
10 9 kBT 0.13/kBT

42



The Hinshelwood Expression

Integration of equation 24 over energy yields

k1

k−1

=

∫ ∞

ε0

k1(ε)

k−1

dε

'
1

(s− 1)!

( ε0
kT

)s−1

e−ε0/kT (25)

‘Steric’ factor

P =
1

(s− 1)!

( ε0
kT

)s−1

s P
1 1
2 40
3 810
10 7.8 × 108

ε0 = 100 kJ mol−1 and T = 298 K.

The expression is only valid in the high pressure limit.

The RRK Expression for kuni

kuni =

∫ ∞

ε0

n(ε) k2(ε) dε

To fit experimental fall-off curves, need to vary s and k‡.
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The RRK expression for k∞

In the high pressure limit the equation for kuni reduces approximately to
the equation

k∞ =

∫ ∞

ε0

k1(ε)

k−1

k2(ε) dε

' k‡ e−ε0/kT (26)

k‡ is the limiting high pressure A factor, A∞.

RRK theory provides no means of calculating k‡ a priori.

TST for the high pressure limit

A 
 A∗ −→ A‡ −→ products

Because A∗ is in thermal equilibrium with A at high pressure we can use
TST

k∞ =
kT

h

q‡

qA
e−ε0/kT (27)

In the thermodynamic form (see lecture 5)

k∞ = e1 kT

h
e∆‡S◦−/R e−Ea/RT (28)

where Ea is the experimentally determined activation energy in the high
pressure limit (see lecture course problems).
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Conclusions

• The assumption that all modes are harmonic and have the same fre-
quency render the RRK model of little predictive use (see Pilling and
Seakins p131 for refinements)

• The statistical idea introduced in RRK theory (i.e. energy flows freely
and rapidly around A∗) is an important one, and is still used in mod-
ern treatments (RRKM theory)

• Statistical theories don’t work when reaction rate becomes competi-
tive with the rate of free energy flow

ABC
hν
−→ ABC∗ −→ A + BC(v′, j′)
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