CHEMICAL REACTION RATES

Trinity Term 2003

Scope of Lectures

A) Bimolecular Reaction Rates

B) Unimolecular Reaction Rates

Relevance to other Lecture Courses

Kinetics and Mechanism

Modern Liquid Kinetics

Interfacial Kinetics

Photochemistry and Energy Transfer
Atmospheric Chemistry

Dynamics of Molecular Collisions

Dr M. BROUARD A) BIMOLECULAR REACTION RATES

8 Lectures 1) Why bother?
k(T) = Ae™ P/FT
e What determines the magnitudes of A and FE,?

e Can these parameters be calculated a priori?

e When (and why) does equation 1 break down?

5 Lectures

3 Lectures H+ Dy — HD + D



Simple Collision Theory (SCT) (Pilling and Seakins, p61 box 3.1) Z3%y is the collision number

. 8kpT\ '/
Key ideas ZXB = Crel Oc Crel = ( b )
T
e Reactions occur by collisions! and
e Collision energy? (E;) must exceed the barrier height (Ey) P
Oc=T
is the collision cross-section.
Reaction rate = Collision rate x fraction of collisions with E; > Ej ‘
. . . . —Eo/RT

Reaction rate _% = k(T)[A][B] Fraction of collisions with E, > Ej e~ o/
Collision rate Z3s [A] [B]

The thermal rate coeflicient is therefore

'Reactants are structureless spheres, with radii 75 and rg and collision diameter

d=ra+r7rp E
= —Eo/RT
2The collision energy is the translational energy associated with relative motion kSCT(T) = Cre1 0c € (2)

mamsa

_ 1,2 _
Et — §,ucre1 Ho= ma +mp

where ¢,q is the relative speed (cye1 = v — v4).



Simple collision theory versus experiment 3 General approach to calculating rate constants

Ascr = GralOc Need to think about reactive collisions in more detail.
Reaction T/ E./ 1071 A/ 1071 Ayt P ‘ POTENTIAL ENERGY SURFACE ’
K  kJmol™' dm?mol~!s™! dm3mol~1s~!
K+Br, — KBr+Br 600 0 10.0 2.1 4.8
2NOCI — 2NO+Cl, | 470 102 0.094 0.59 0.16
|FORCES ON NUCLEI |

— 500 83 1.5 x 107° 3.0 5.0 x 1075

Hy+CyH, — CoHg | 800 180 1.2 x 1073 7.3 1.7 x 1076

| MOTIONS OF NUCLEI]

Implies the reaction cross-section, o,, might be better written

| CLASSICAL MECHANICS | | QUANTUM MECHANICS

o, = Po,

’ simple collision theory ‘

where P is the probability of reaction on collision or the steric factor.

3In the table of data the activation energies have been experimentally determined ‘transition state theory‘
using
dlnk  FE, 3)
dT  RT?
The collision cross-sections 0. = wd? are taken from viscosity data.



Collisions between two Atoms and Potential Energy Curves Force, F(R), acting on the particles at separation R
(See Valence Lectures)
dV(R)

R =="3r"

Separate the electronic and nuclear motions of atoms A and B (Born-
Oppenheimer approximation)

77Z)t0t<7q’ R) = 1/}e1(7ﬂ; R)qu)n(R)

Solve the Schrodinger equation for the electronic motion

For specified initial positions and velocities of the atoms, their motion dur-
ing the collision is calculated classically using Newton’s Laws.

The potential energy curve, V(R), for an electronic state is the
dependence of the electronic energy on A—B nuclear separation,

R.

Head on collision

Hnwn(R) = Enl/}n(R)
E,=hv(v+3)+--

Below the dissociation limit the vibrational levels of AB can be calculated
from V(R) (see J.M Brown, Molecular Spectroscopy Primer).



Glancing blow collisions

b is known as the impact parameter (defined as the distance of closest ap-
proach of the atoms in the absence of an interaction potential)

It determines the magnitude of the orbital angular momentum of the colli-
o4
sion

|€| - Mcrelb

In the absence of a third species, which could remove the excess energy and
stabilize the AB molecule via a secondary collision, only elastic scattering
occurs in an atom-atom collision.

4Quantum mechanically the orbital angular momentum |¢| = h\/L(L + 1).

Collisions between molecules and Potential Energy Surfaces

For the simplest chemical reaction
H + H2 — H2 + H

the potential energy will depend on three coordinates, (ry,rs,6),

The resulting potential energy function, or surface, has the following form,
plotted as a function of r; and ry at two fixed values of the bond angle 6:



Reaction Coordinate and the Reaction Barrier

The reaction coordinate is the minimum potential energy pathway (MEP)
from reactants to products.

The PES provides information on the barrier height to reaction. Vibrational The potential energy barrier, V* is the maximum potential energy along
force constants and vibrational frequencies can also be determined (see the reaction coordinate.”

lectures 3 and 4).
) The barrier is a saddle point on the potential energy surface, and may be

thought of as a bottleneck through which reactants must pass if they are
to proceed to form products.

As with atom-atom COHISlOHS" once the potential energy surface (PES) 15 5Vt is sometimes referred to as the classical barrier height because it does not include
known, the forces on the particles can be calculated (lecture 2). vibrational zero-point energy (see lectures 2 and 3)



2) Molecular Collisions Types of Potential Energy Surface

Classical motion over the potential energy surface Direct reactions with barriers

Solving the classical laws of motion for a set of initial conditions (the ini-
tial positions and velocities or momenta of each atom) yields the classical
trajectory of the particles. F + H, — HF + H

Reactions with deep potential energy wells (lectures 6 to 8)

O('D) + H, — OH + H

The two trajectories, shown in different ways in the figures above and below,
represent examples of an inelastic (energy transfer) collision and a reactive

collision:



The Reaction Probability
Not all collisions lead to reaction.

Collisions with different angles of approach, v, and impact parameters, b,
have different probabilities of reaction, P(b, 7).

In practice, many (~ 10°) trajectories, corresponding to different initial

conditions, are needed to obtain accurate value for k(7").5
(See Pilling and Seakins p65 for a modified version of simple collision theory

6This method of calculating k(7T') is usually referred to as the classical trajectory ) . )
method. which accounts for the angle dependence of the reaction barrier.)




Reaction Cross-sections

The reaction cross-section can be expressed as an integral of the reaction
probability over impact parameter.

bmax
o = / P(b) 2wbdb .
0

P(b), is known as the opacity function. It can be calculated using the
classical trajectory method, by running trajectories at different impact pa-
rameters.

Nreactive (b)

PO =N

Head-on collisions tend to be more reactive than glancing-blow collisions.

Cross-section dependence on collision energy

Reaction cross-sections usually vary with collision energy, ¢;.

For a reaction with a barrier, collisions at high collision energy are more
reactive than those at low collision energy

The rate constant for a reaction should therefore be obtained from reaction
cross-sections by evaluating the Maxwell-Boltzmann average of ¢, 0,(€;):

k(T) = /OOO Crel Ur(6t> f(Et) de

(See Pilling and Seakins pp 61-65)



Cross-section dependence on rovibrational state State-specific to thermal rate constants

Trajectories over two different surfaces illustrating that the reaction cross-
sections can also depend on the reactant molecule vibrational (and rota-

tional) state.

A + BC(i) — AB + C

The thermal rate constant may be written as a reactant Boltzmann popu-
lation (P;) weighted sum over state-specific rate constants, k;(T):

k(T) = Z Biks(T) ()

An example of a reaction showing strong vibrationally dependent reaction
rate constants will be discussed in lecture 4.

The reaction barrier is a bottleneck through which trajectories must pass
if products are to be formed: motion of the reactants along specific coordi-
nates is required if reaction is to occur.

10



A Reaction Movie

A quantum mechanical movie of a reaction taking place
(Althorpe J. Chem. Phys. 114 1601 (2001))

H+ Dy — HD(V' =0,j=0) + D

(See 3rd Year Lectures on the Dynamics of Molecular Collisions)

11



3) Transition State Theory”’ The Reaction Coordinate
A + BC — ABC* — AB + C

Why develop an approzimate theory?

Rigorous QM calculations only possible for N < 4

For N > 4 classical trajectory calculations are also time-consuming

Both require knowledge of the full Potential Energy Surface

Simple collision theory doesn’t work

The key advantage with transition state theory is that you only need to
know the PES at the transition state.

Motion orthogonal to the minimum energy path (MEP) corresponds to

"Simpler derivations of transition state theory which employ the quasi-equilibrium conventional (symmetric) stretching and bending vibrations of ABC.

hypothesis appear in many of the recommended texts (e.g., Pilling and Seakins, p66), ) ) ) )
and in the ‘Applications of Statistical Mechanics’ lecture course next year. Motion along MEP corresponds to translational motion over the barrier.

12



Reaction rate constants and probabilities Thus, the rate constant in one dimension is

REACTION IN ONE DIMENSION K(T) = / Ple)  f(c)de
0

This can be written in terms of kinetic energies

K(T) = / " Ple) fle) 2

1

where € = $uc?,

_ i —€t/kT
f(et) - hqt €

and ¢ is a 1D translational partition function per unit length:

([ 2mpkT 12 with o — _"AmBC
B h? H e A+ mic

The rate of reactant approach (the number per unit length per sec) at ¢; represents the number of thermally accessible translational states per
relative velocities between ¢ — ¢ + dc¢ unit length at temperature, 7.

dRate = nanpc ¢ f(c)de
where f(¢) is the 1-D Maxwell-Boltzmann distribution of relative velocities. Substitution into the expression for k (T) yields®

The reaction rate is the approach rate times the probability of reaction at
a given collision energy, P(€;)

d Reaction Rate = nangc P(e) ¢ f(c)de k(T) = —/0 P(e) e /* dey (6)

Hence the thermally averaged reaction rate is

d?’LA

—3; = "ATBC /°° P(e) c f(c)de
0

8Note that equation 6 is dimensionally correct for a rate constant in 1D (m molecule ™!
-1
s7h).

13



REACTION (A+BC) IN MANY DIMENSIONS This equation is usually written more compactly as:

1 /O"
= — N(e)e *T de 8
a [ Ve 0

where

= Zgn P,(e) with e =¢ + ¢, ,

and ¢ is the total reactant partition function (g ¢a.int ¢BC:int)-

N(e) is called the cumulative reaction probability!'°

A and BC approach in specific quantum states - equation 6 applies to each
quantum state, weighted by the Boltzmann population for the molecules in
those states:

en/kl

P,(e e /* de 7

th / Z t QA :int IBC:int ’ ( )
where ¢, is the degeneracy of state n, and ?

gA:int = GA:el and dBC:int = ¢BC:rot 4BC:vib dBC:el
with . . . -
Equations 7 and 8 are exact provided the reactants are in thermal equilib-
2k T\ *? rium.

QG = ( 12 )

10The sum of reaction probabilities N (E) includes reactant orbital angular momentum
quantum states, labeled with quantum number L with degeneracy 2L + 1. In transition

9The internal partition function for atom A is simply the electronic partition function, state theory this motion is accounted for via the rotational partition function of the
which is usually just given by the electronic degeneracy of the ground state. transition state.

14



The Transition State The Transition State Theory expression for k(T)
Transition state theory provides an approximate expression for N(e).

The transition state is a bottleneck on the PES through which reactants
must pass if they are to form products.!!

From assumption 2 the total energy at the transition state may be written

The assumptions of transition state theory are: e=¢€+e€ +e

1. The reactants are in thermal equilibrium (as assumed in the preceding €0 is the difference in zero-point energies between the reactant and transition
section) state.

2. Motion along the minimum energy path is separable from motion
orthogonal to it

3. Motion along reaction coordinate is classical

4. Motion along the minimum energy path is direct. (This is often re-

ferred to as the no re-crossing rule - see K. Laidler p116.)
Assumptions 3 and 4 imply

Pu(eh) =1 if € >0

1Tt is formally defined as a dividing surface on the PES separating reactants from
products, and is usually located at the top of the barrier

15



Substitution into equation 7, changing the variable of integration to e},
yields

t
N g;; efen/kT . oo L
k(T) = 2 e~o/kT e /T et 9)
0

B h Gt 4A:int dBC:int
Evaluating the integral over translational energies yields

kT

i
/{Z(T) — Qint

—eo /KT
— e
R G qasint @BC:int

where 12

ZwukT)3/2 { g }—1
¥ i I i . N
int = Grot 9yin 4 and G = | —=— = |2t
t t b Hel t ( 2 T

and

gBC:int = 4BC:rot 4BC:vib dBC:el

In terms of the total molecular partition functions of the transition state
and reactant molecules this expression can be rewritten more simply

k(T) has units of m®*molecule s~

12Note that ¢k, excludes the ‘vibrational” or ‘translational’ degree of freedom corre-
sponding to motion along the reaction coordinate.

Recombination of two atoms - simple collision theory revisited

A + B — AB' — products

For the transition state

kT
C_Iiint = Qfot = Bt
B i here d +
= winere =T T
872 pud? ATTB

The single ‘vibrational’ mode of AB* is the reaction coordinate, and hence
is not included in ¢ ,.

For the reactants

o (BBT) ] i
h2 gA:t 4BC:t

and ga/pine =1
Substitution into equation 10 yields

(12)

T 1/2
k(T) = (&> md? e~ o/FT
TH

This is the same expression as simple collision theory.

I3For the reaction to occur, the excited AB product must be stabilized by collisions
with a high pressure of an added bath gas - see lectures 6 - 8.

16



Summary of expressions for partition functions

Motion Symbol  Degrees of Partition Order of
Freedom Function Magnitude
3/2

Translation e 3 (W) 10%° - 1033 m—3
Rotation (Linear) gBCrot 2 f]]fcg 10! - 107
Rotation (Non-linear) 3 1 (kpr ) (L)l/z 102 - 103

dABC:rot o \ The ABC
Vibration (Linear) gABCwib 3N —5 H{’>N—5 i 1-10

wvib ) Qyib

Vibration (Non-linear) gABCwvib 3N —6 H?N_G ¢, 1-10
TS Vibration (Linear) q. 3N -6 | 1-10

vib 7 vib
TS Vibration (Non-linear) ¢F, 3N -7 H?N_7 @ 1-10
Electronic qBC:cl - Zz gie~ci /ksT %

i
Qyip =

(1 _ e—hcui/kBT)fl

Rotational constants, A;B and C, and vibrational frequencies, v, expressed in

Cmil.

17



4) Applications of Transition State Theory

Estimating the Steric Factor

TST can be used to estimate the steric factor.

TST for A+ B — AB is the same as SCT (lecture 3)

k_T % e—co/kT

ksct(T) ~ h q3
t

Here the partition functions have been re-defined as partition functions per
degree of freedom, (i.e. ¢2, = (kT /o B*).

For AB + CD — ABCD¥ — products proceeding via a non-linear ABCD?
transition state
kT qgo qgl
kit (T) ~ == =255
h 4t Grot9vin

—eo /KT

The steric factor is

D= ktst (T) -~ (QVib)3
ksct (T) Grot

Using the order of magnitude estimates of the partition functions (lecture

3)
) 3
p= (q“b) ~10"2-10"
Qrot

Generally, the estimated steric factor falls with increasing reactant com-
plexity.

18

Detailed calculation of thermal rate constant

H+ Dy — HD + D

_ kT Qiint

LT = 4 —eo/kT
( ) h dt gH:int 9Ds:int

€

The transition state is linear.

Parameter Reactants (Dy) Transition State
Te.un/A — 0.93
Te.pD/A 0.741 0.93
Potential energy V*#/kJ mol~! 0.0 39.91
Frequencies/cm™!

Stretch 3109 1762
Bend (doubly degenerate) — 694




At 300 K: Substitution into the expression for k(T) yields

€ = Vi4gPP?—P K(T) = 8.46 x 10”7 <o/keT
= 39.91+ 18.84 — 18.59 = 40.16 kJ mol ™! — 8.63 x 1072 m3molecule st
GGOI:CB; = 1.02x1077 = 8.63 x 107'® ecm®molecule 's™?
BT = 6.25x 10257}
2 kT \*”
G = (%) =6.99 x 10* m™®
h k(T = 300K)/107'" cm® molecule™ s™!
For the transition state Exper-irpental 2.1
Transition state theory 0.86
4 Quantum mechanics 1.9
o= t m]\}mg T mamy 2 = 4.02 x 107% kg m? Classical mechanics 1.8
h2
Bt = o = 1.38 x 10722 J molecule™!
kT
P _
G = i =30.0

di = (1 —e /7)™ = 1.0002- (1.037)* = 1.076

%

For the reactants!*

In, = 9.14 x 10°* kg m?
h2

Bp, = = 6.08 x 107** J molecule™!
21p,
kgT
qDs:rot = 2BB =341

qDyvib = (1 - e_hu/kBT)il =1.00

14The assumption that one can employ the high temperature expression for the rota- The discrepancy between TST and experiment is due to neglect of tunneling

tional partition functions leads to a relatively small error at 300 K in TST (see below).

19



Tunneling Corrections Failings of Transition State Theory

Motion over the barrier cannot always be treated classically TST assumes that (the classical) motion along the minimum energy path
is direct, i.e. there is no recrossing .

The importance of recrossing trajectories depends on the shape of the po-
tential energy surface, the total energy and the masses of the species in-
volved.

Transmission probability for a square potential energy barrier

T= z((gz ~ ¢ 2(b=) k=2u(Vi—e) /1

where b — a is the barrier width, V* is the barrier height, and ¢; is the
collision energy.

Tunneling is most important for light particles passing through thin barriers

Re-crossing of the transition state is a minor problem at room temperature
for reactions with substantial barriers (left figure).

When re-crossing is important, TST yields an upper-bound to the classical

o rate constant.
Tunneling is most apparent at low temperatures.

16TST also assumes the reactants are in thermal equilibrium. This assumption is gen-

15(This is an approximate expression valid when k(b —a) >> 1. See last problem sheet erally valid in bulk kinetic studies, where the pressures are sufficiently high to ensure that

of the Quantum Mechanics lecture course and Atkins and Friedman, Molecular Quantum the rate of inelastic collisions, which serve to restore the system to thermal equilibrium,
Mechanics is greater than the rate of reactive collisions.

20



Temperature Dependence of rate constants

Consider an A + BC reaction proceeding via a linear transition state.

b
qrot

h gt 4BC:vib 4BC:rot

kT

k(T) = e Eo/RT

Assume the vibrational partition functions are unity, and extract the tem-
perature dependence of the rotational and translational partition functions

CT T o—Fo/RT

k(T) 3
T2 71

2

= C’T_% e~ Fo/RT

In general, the temperature dependence of the bimolecular rate constant
will have the form

k(T) = CT"e /T

From the definition of the activation energy, one obtains

dink(T) nRT+E, E,
dr RT?  RT?’
i.e.
E1a = E() + nRT

Often Ey > RT, and the temperature dependence of k(7) is dominated by
Ep.

Non-Arrhenius Behaviour

Tunneling through the reaction barrier can cause curvature in the Arrhenius
plot.

The temperature dependence of the partition functions appearing in the

A-factor can also cause curvature. This is important when Ey < nRT,
17

e.g.,

OH + CO — HOCO* — H + CO,

Radical recombination reactions also have Ey ~ 0 - see lectures 6-8)

17This reaction proceeds via an energized HOCO* complex. The unusual temperature
dependence arises from the competition between dissociation of HOCO* back to reac-
tants and dissociation to form products. The rate of latter increases rapidly with temper-
ature because the vibrational partition functions for the low frequency vibrational modes
of the second transition state increase rapidly with temperature. Tunneling through the
second barrier may also be important.

21



Non-Arrhenius Behaviour The curvature for this reaction is reasonably well accounted for by TST

once a tunneling correction is made.
Also arises if the rate constant displays a marked dependence on reactant

quantum state:
OH + HQ(V:O,1> —>HQO + H

Vibrational excitation of the Hy to v = 1 increases the rate constant by
over a factor of 100 (i.e. k1(T) > ko(T)).'®

e—Aév/k‘BT
GH,:vib
The reaction barrier occurs late along the reaction coordinate once the H—
H bond is stretched (i.e. the PES has a ‘late barrier’ - see lecture 2).

Better agreement between TST and experiment can be obtained by varying
some of the TS vibrational frequencies. This procedure is often used to
extrapolate experimental data to very low or very high temperatures.

18Vibrational excitation of the ‘spectator’ OH reactant has very little effect on the
reaction rate.

22



Isotope Effects

Transition state theory provides a reliable estimate of the kinetic isotope
effect
]{?H AH EaH - EaD

=it Sl Teb

1 .
Y A, RT

E,p/mu are the activation energies of the reactions with and without isotopic
substitution.

The second term often dominates (F.y — Eap ~ Eog — Eop).

An upper bound to the kinetic isotope effect may be obtained assuming
that the zero point energies of the transition state species are insensitive to
isotopic substitution *

(EaH - EaD) ~ (EOH - EOD) ~ (EZD - EZH)

The difference in activation energies is then approximately the difference in
the reactant zero point energies I, y/p.

19This will be the case if the bond involving the deuterium substitution is significantly
weakened in the transition state

23



5) Thermodynamic Formulation of TST Thermodynamics

Transition state theory employs partition functions per unit volume?°.

Why bother?

:t Need to express these partition functions in terms of the thermodynamic
k(T) = kT ¢ o—€o/kT functions, entropy and enthalpy.

For an ideal gas (see Statistical Mechanics Lecture Course and Atkins)

U —U(0)

S=—7%

+kIn@

where U(0) is the internal energy at absolute zero (i.e. the zero-point energy
of the N particles) and

Here ¢ is the usual (dimensionless) molecular partition function.

] ] ) The standard molar entropy of an ideal gas can then be written (using
e T'S structure and vibrational frequencies may not have been calculated Stirling’s approximation)

e For reactions in solution the partition functions are not simply defined e _ U® —U*®(0) Rl q° R
(e.g., what about the role of the solvent?) N T i Na *

Is there a simpler expression for k(T') in terms of thermodynamics func-
tions? 20This originates from the fact that rates are proportional to reactant concentrations
not reactant partial pressures

24



For an ideal gas Kinetics

For A + BC reaction in the gas phase (equation 10)
H=U+PV =U+ NKT

KT ¢t
E(T) = —— ——— e /FT
and 1) h qa qsc
H(0) =U(0) Multiplying this equantion by N converts k(T) into units of m® mol~! s~
Then, using Naeg = A*U®(0) and equation 13 (dropping the primes) 22
Therefore the equation for the entropy may be rewritten RT KT aegon —atn®
kK(T)=——e e (14)
P h
H° — H®(0) q°
7 = T +Rln Ny AYH® Enthalpy of activation
AS® Entropy of activation
. . . . .e
f[“he partition function per unit volume ¢’ and ¢° are related by the expres- Note that k(7)) has the units of m®mol~'s~!, and the standard state for
S1on: evaluating A*H® and A#S® is p® = 10°Pa above).
qe ) Ve o kBT
N—A =4 N—A =4 »° 22This equation can be rewritten
k() = 5 EL et nr
©
and therefore in terms of thermodynamics functions ¢’ can be written 2: P
ie. (given AG® = —RTInK)
RT kT
© kT _(He - k(T) = — ~— K*
g =L B s, (#© ~H® () /RT (13) M="357

ve p

This suggests the alternative derivation of equation 14 (found in most texts), which is
based on the (questionable) assumption of a quasi-equilibrium between reactants and
transition state

2'In many kinetics texts, the standard state is taken as unit concentration (¢ =
1.0moldm™—2). If this convention is used then the same standard state must also be A+BC=ABCt S AB+C
employed when evaluating the thermodynamic functions. Here, however, we will employ
the correct thermodynamic standard state of p°® = 10° Pa.

25



Comparison with the Arrhenius equation

For a bimolecular reaction involving ideal gases
AH® = A'U® + AnRT
with An = —1.

The activation energy is calculated from

dInk(T)
T°——— =F
R dTr :

by substituting the TS expression for k(7T')

k() = BT T ais® im an®
p® h
This yields
E,=A'H® +2RT
or
A'H® = E, — 2RT

Thus

k(T) = ¢ RT kB_TeAis’e/R o~ Ba/RT

p® h

(15)

The entropy of activation
ATS® =59 —S% —S e

where S is the entropy of the transition state 2

The entropy of activation represents the change in entropy in going from
the reactants to the transition state.

For gas phase bimolecular reactions A*S® < 0, reflecting the loss of transla-
tion entropy on forming a single transition state species from two separate
reactants.

The A-factor from simple collision theory (lectures 3+4) yields an entropy
of activation of about —50.0 J K~tmol~*.

More negative values (reflecting a larger decrease in entropy on forming the
TS) imply a lower A-factor than predicted by simple collision theory.

26

2389 excludes the entropy associated with motion along the reaction coordinate.



Unimolecular Reactions and Reactions in Solution
[Aside]

For unimolecular reactions in the gas phase (in the high pressure limit - see
Lectures 6-8), an analogous derivation yields

K(T) = et Bl oa15% /R B/

- (16)

For activation controlled solution phase reactions (see Modern Liquid Ki-
netics lecture course and Pilling and Seakins, pp155-156), either equation
16 is employed, or the equivalent expression 2*

i k_T eAise/R efAiHe/RT

M) = =5

(17)
where ¢ is usually taken as 1.0moldm =3, and at constant pressure
ATH® = A'U® + PA'V® ~ AIU®

In solution, the thermodynamic functions of activation in these expressions
include the entropic and enthalpic terms associated with encounter pair
formation.

24However, note that for solutions, the equations for the canonical and molecular
partition functions employed in the preceding sections are no longer valid, and equation
17 is written down more by analogy with the gas phase expressions.

Applications - thermochemical kinetics

H + CQHG e CQH?? — H2 + CQH5

Estimate the A-factor for this gas phase reaction reaction at 400 K.

Use CyHg as a ‘model” on which to base calculation of S¢ (i.e. S® for
CoH?).

A'S® =SS —SH —Scan
1. Translational Contribution to S

McyHg ~ megyH,

S sioenns™ S Cotin
t:itrans— CoHg:trans

2. Rotational Contribution
Io,ne >~ Ioyn,
Reduction in symmetry on forming the TS (symmetry numbers)
ocyng = 600,mH;
Thus
Siﬁm: SCZH'Z:M +RIn6

3. Vibrational Contribution

Neglect changes in vibrational and internal rotational partition func-
tions on forming the H—H—C structure.

© ©
Si:vibz SC2H6IVib

27



4. Electronic Contribution Observing the Transition State Region.
CyHg has a singlet ground state, that of CoH: will be a doublet

. - Photoelectron spectroscopy of FHS
Si:elg SCQHG:el +R In2

Measure the kinetic energies of the

A lower limit for the entropy of the TS is therefore
ejected photoelectrons

°> Seaty +RIN2 4+ RIn6

— hv t —
5. H atom Entropy [F—Hy]” — [F—Hy| +e

ST is obtained from the Sackur-Tetrode equation® The neutral products are produced in geometries very close to those of the

transition state for the reaction
6. Entropy of Activation

A lower limit on the entropy of activation is therefore F+ H,—FH + H

ATS® =59 —ST —S > —100.06 J K~ 'mol ™!
7. The A-factor

A lower limit for the A-factor is

o BT kT o

A=e  h

A>12x%x10" m®mol™'s™!' = 1.2 x 10'° dm®mol 's~!

The experimental A-factor is 1.0 x 10 dm®mol~'s™! (i.e. within a
factor of 10).

The spectrum suggests that the transition state is bent (see Science, 262,

25Note that H is a 2S atom and that the standard state is 10° Pa. (1993)a 1852 )
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B) UNIMOLECULAR REACTION RATES

Relevance

(1) Thermal Unimolecular Reactions
A+M=A"+M
A* — products

(i) Radical Recombination

A+ B = AB*

AB* + M — AB + M

(iii) Chemical Activation

A+ B = AB*
AB* + M — AB + M

AB* — products
(iii) Photodissociation
A oA — products

See Photochemistry lectures
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6) Thermal Unimolecular Reactions

The Lindemann Mechanism

A+ M A* £ M Activation

A + M LR A+ M Deactivation

A" 22, products Reaction

M is a ‘third body’ - another gas molecule in the system.

d[A] .
=
kunl - [A] k2



Steady state approximation Limitations with Lindemann Theory

(i) Equation 18 may be rearranged

d[A* k1[M][A
B [dt] =0 AT=7 1[5\4]”+]k; 1 1 1
-1 2 = — 4 (19)
kuni koo kl [M]
The phenomenological unimolecular rate constant is Thus a plot of 1/ky,; versus 1/[M] should be linear with slope 1/k; and
intercept 1/kq.
[A7] [ ky [M] ]
ki =—=ko=|—7—1| k 18
A] 2 kLM + k| (18)

Plots of the variation of k,,; with pressure are known as the fall-off curve.

(i) Limiting High Pressures (k_,[M] > k)

(ii) Limiting Low Pressures (k_,[M] < k»)
kuni = kO = kl [M]

Qualitatively agrees with experiment (a good thing)
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(ii) [M]y 2 is the concentration (proportional to pressure) at which Ky, = Unimolecular Reaction Mechanisms
ks/2). From equation 19

2 ks Different unimolecular reactions have different minimum energy pathways.

Fix k. to the experimental value.

Use simple collision theory to calculate k;
[somerization

ki = pZiy e M (20)

where ¢ is the energy threshold to reaction (the critical energy) and Z3,; =
Cre10¢ (the collision number).
Elimination

Bond fission

How does the molecule receive and loose energy (energy transfer)?

What is an energized molecule - how does it behave?

How does the energized molecule react?

Suggests p ~ 10® > 1 (activation is much more efficient than expected).
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Potential Energy Surfaces

ABC — AB + C

Seems likely that ko will increase with energy.

The Energy Dependent Lindemann Scheme

A+ M9 A% £ M

)

Afe) + M "9 A 4 M

A*(e) k2o products

Apply the steady state approximation A*(e)

Compare with equation 18
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Deactivation - the Strong Collision Assumption

Deactivation tends to be efficient and vary only mildly with energy.
Strong collisions

Assume every collision renders A*(e) unreactive

koi(€) = Zau

Contribution to ku, at energy € is n(e) ko(€) Weak Collisions

Kuni = /OO n(e) ko(€) de (21)

€0 Better to treat activation-deactivation in a step-ladder fashion. Critical
parameter is average energy transferred per collision (AE?)1/2

. . , Bath gas | He Xe H,O C;Hg
where n(€)de is the fraction of A molecules in the energy range € — € + de. (AED2 Jom! ‘ 515 320 820 220

Efficiency of deactivation increases with increasing complexity of molecule.
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Problems to address

In the high pressure limit there is a rapid pre-equilibrium

A+M = A"(e)+ M

n(e) = ([A*“”) ) _ g

qA

What are the degeneracies (or density of states) g(€)? (lecture 8)

As the pressure is decreased, the equilibrium between A* and A is perturbed
by the reaction.

The most highly excited A* molecules are preferentially depleted by reaction
(they have bigger k).

If n(e) changes with pressure, kyy; is likely to as well (equation 21).
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7) Energy Dependent Reaction Rates

Radical recombination

A+ B Fa, AB* Recombination
AB* Foa, A+ B Dissociation
AB* + M ™ AB + M Stabilization

d[A]

_F - krec [A] [B}

Using steady state approximation for AB* yield

o kak [M]
kR [M]
(i) Low pressure
krec = ]{I?_k: M] 3' order kinetics
(ii) High pressure
kree = Ky 27 order kinetics

Formal reverse of a bond fission unimolecular reaction

krec

K. =
kuni
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Chemical Activation

AB* + M 2 AB + M

ke

AB* = Reaction



Reaction rate = diC] = k.[AB"]

dt
AB
Stabilization rate = % = kyp[M][AB"]
Reaction rate [C] ke

Stabilization rate ~ [AB]  kp[M]

Lifetime of AB* = 1

k_o+ kp[M] + ke

Choose process with small k_,

Vary lifetime of AB* by changing [M]

Fvidence for the Energy Dependence Reaction Rates
Chemical Activation studies

(i) The isomerization of methylcyclopropane

a) The total reaction rate to produce the mixture of butenes increases
with energy in AB*

b) The composition of the butene mixture is independent of the source
of the energized molecule

Implies rapid randomization (or flow) of energy within AB* on a timescale
shorter than that for reaction
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(ii) The dissociation of bicyclopropyl derivatives The reaction rate constant, ko(€) (Pilling and Seakins, pp 126-128)
[ustrate ideas with RRK theory for unimolecular reactions

Distinguish between energized molecule, A*(€), and the activated molecule,

A

A*(e) — A'(e) LR products Overall ks (e)

a) At pressures < 310 Torr, the product ratio I/II is invariant to pressure

(= M])

b) At much higher pressures, product I dominates

Timescale for energy flow (or intramolecular vibrational redistribution or

IVR) ~ 10712 5.

IVR (or vibrational energy flow) is usually much more rapid than reaction
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Assumptions The RRK Expression for ks(e) (Pilling and Seakins, p126)

RRK theory is a statistical theory of unimolecular reactions.

e Ignore A* rotation
If energy flow is rapid and random (i.e. unrestricted or free), the vibrational
e Molecule A has s identical harmonic oscillators with energy e energy in A* will be distributed statistically°.
' . ' ‘ . . Statistically, the fraction of A* molecules with energy €, localized in one
° Ai(e) ?Llso has s identical os'cﬂlators, 'but energy € is localized in one 1.4 (the reaction coordinate) is
vibrational mode, the reaction coordinate
s—1
e A* falls apart with rate constant k* (of the order of an inverse vibra- r(e) = (6 — 60)
tional period (~ 107! s)) independent of energy €
e Vibrational energy flows freely in the energized and activated species Thus

Reaction Rate constant

Fa(e) = ( — ") = (23)
= K1 (e) (22)

- . . . ) . 26Tn this context statistical means that each microstate of the system at fixed energy is
r* is the fraction of energized molecules which have energy €y localized in equally accessible. The microstate refers to a specific way of distributing the vibrational

the reaction coordinate energy among the s oscillators (see lecture 8).
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Interpretation of ks (e) How does an energized molecule behave?
Molecules close to dissociation can be observed spectroscopically

Direct absorption spectroscopy (vibrational overtone spectroscopy)

Emission spectroscopy

A simple statistical interpretation

e As € increases, the probability of localizing ¢ in the reaction coordi-
nate also increases. Thus ks (€) increases.

e Increasing s reduces the probability that one specific oscillator (the
reaction coordinate) receives enough energy, €, for reaction to occur.

Thus ks (€) falls.
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IVR and Free Energy Flow Ezperimental measurements of ks (e)

When the vibrational energy is low it stays localized in the (nearly har- (i) Vibrational Overtone Excitation
monic) normal modes

As the vibrational energy is raised the motion becomes more chaotic

Chaotic motion is induced by the anharmonicity of the potential energy
surface which couples different vibrational modes 2.

Assumption of rapid IVR on the reaction timescale breaks down for small
molecules (because the vibrational motion tends to remain localized and is Best fit parameters:

not chaotic) with small reaction barriers ¢, (since these reactions will be o 1
ko= 5.98x10"s”

fast).
s =5
-1
27Tt can also be promoted by coupling between the rotational and vibrational motions €o = 11600 cm from other measurements
of A*
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Does RRK theory for ko(€) work? (ii) Flash Photolysis (time-resolved)

k* and the number of oscillators s need to be adjusted to fit experiment CH,CO N CH,CO(S)) ptermal Coprersion (- () () ka(e) CH, + CO

- 1
s typically takes a value s ~ 5(3N —6) The last reaction step is rate determining

The assumption that all modes are harmonic and have the same fre-
quency does not work

Rotation can play a role

Some of these problems are addressed in a more sophisticated statistical
theory called RRKM theory (See Pilling and Seakins).

Is the assumption of rapid IVR valid in this case? — Yes...

Both olefinic (CH) and methylenic (CHy) C—H stretching overtone transi-
tions were employed.

The CH, product is detected using Laser Induced Fluorescence (LIF)

k2 (€) is obtained by monitoring the CHy LIF intensity as a function of delay
time between the ‘pump’, excitation laser pulse, and the ‘probe’ LIF laser

ks (€) is independent of type of C—H mode excited.
pulse.
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8) RRK theory and beyond

The activation step and kq(€) Pilling and Seakins pp 124-126

Recall (lecture 6) that in the high pressure limit

efe/kT

n(e) = ([A[X]E)]L G

where g(€) is the vibrational density of states (the continuous analogue of
degeneracy).

_9(e)
k1

qa

How does the degeneracy arise?

RRK expression for ki (e)

According to RRK theory (i.e. assuming A* contains s identical harmonic
oscillators)

(24)

k1 (€) 1 1 (%)S_l o ¢/kT

ke, KT (s—1)!

where, within the strong collision approximation, k_; is the collision num-
ber, ZQ,;.

Emax (s — 1) kgT
kl(emax) _ 1 (S - 1)5—1 87(871)
k?_l (8 — ].)' kT

S €max kl (emax)/kfl

I 0 1/kT

2 kgT  0.37/kgT

3 2kgT 0.27/kgT

10 9ksT  0.13/kgT
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The Hinshelwood FExpression

Integration of equation 24 over energy yields

12
—
/N
‘m
o
N——
v
|
8
~
a7
N

‘Steric’ factor

s P

1 1

2 40

3 810
10 | 7.8 x 108

€0 = 100 kJ mol™! and T = 298 K.

The expression is only valid in the high pressure limit.

The RRK FExpression for ki

b = [ ) bafe) de

€0

(25)

To fit experimental fall-off curves, need to vary s and k.
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The RRK expression for ks

In the high pressure limit the equation for k,,; reduces approximately to
the equation

[ kale)
koo = /6 e ko (€) de

0

~ ki e—eo/kT

k* is the limiting high pressure A factor, A...

RRK theory provides no means of calculating k* a priori.

TST for the high pressure limit

A = A" — A} — products

Because A* is in thermal equilibrium with A at high pressure we can use
TST

kKT ¢
koo = T;J_A e—c0/kT (27)
In the thermodynamic form (see lecture 5)
ko, = e ﬂ oAFS® /R —Ea/RT (28)

where F, is the experimentally determined activation energy in the high
pressure limit (see lecture course problems).
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Conclusions

e The assumption that all modes are harmonic and have the same fre-
quency render the RRK model of little predictive use (see Pilling and
Seakins p131 for refinements)

e The statistical idea introduced in RRK theory (i.e. energy flows freely
and rapidly around A*) is an important one, and is still used in mod-
ern treatments (RRKM theory)

e Statistical theories don’t work when reaction rate becomes competi-
tive with the rate of free energy flow

hv

ABC % ABC* — A + BC(V.j)
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