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Plan

Quantum beat spectroscopy

Applications to:

Collisional depolarization: this talk

Molecular photodissociation: poster (Yuan-Pin Chang)

Future directions: poster (Yuan-Pin Chang)



Motivation

Rotational polarization

• Angular dependence of potential energy surfaces

• Mechanistic information

Aims

• Measure polarization using quantum beat spectroscopy.

• Weak magnetic field effects in chemistry.

• Control of angular momentum orientation and alignment.



Collisional depolarization



Collisional depolarization

J
J’

Z

qj j’

How easy is it to change the direction of J by collision?

Relevant to the detection of OH(X) or NO(X) by LIF.



Collisional depolarization

K

Can be characterized in terms of the angular momentum transferred, K

Often assumed that K is minimized in collisions



Angular distribution (OH(A) + Ar)

Increasing K −→

QCT calculations by C.J. Eyles and F.J. Aoiz

New PES by J. K los and M.H. Alexander



Angular distribution
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‘Disalignment’ (even terms)

a2 = 〈P2(cos θj j′)〉 − 0.5 ≤ a2 ≤ +1.0

‘Disorientation’ (odd terms)

a1 = 〈P1(cos θj j′)〉 − 1.0 ≤ a1 ≤ +1.0



Zeeman quantum beat spectroscopy



OH source and detection

Pump

H2O2 + hν −→ OH(X2Π) + OH(X2Π)

Probe

OH(X2Π) + hν′ −→ OH(A2Σ+)

[

or NO(X2Π) + hν′′ −→ NO(A2Σ+)
]

Use a 10 µs pump-probe laser delay.

Only 300 K results presented (superthermal studies also conducted).



Experiment

Detect OH(X2Π) by polarized laser induced fluorescence...

Kr

...in presence of a weak magnetic field.



OH(X) spatial distribution

Spatial distribution of OH(X2Π) is nearly isotropic.

H||Z

Y
X

No net magnetic moment, no precession about the field



Initial OH(A) spatial distribution

Excite OH(X) with linearly polarized probe radiation.

Transition probability P ∝ | µ̂OH · ǫ̂a |2

H||Z

Y
X

e
a

Generates an aligned ensemble of excited OH(A2Σ+) radicals.



Zeeman quantum beats

Precesses in magnetic field with Larmor frequency, ωL.

H||Z

Y
X

e
a w

L
t

Observe emission through a linear polarizer.



Zeeman quantum beats

Alternative picture: R11(4) ↑ transition

Coherent excitation of Zeeman levels.



Link with theory (linearly polarized light)

Initial aligned distribution

P (θj) =
1

2

[

1 + A20P2(cos θj)
]

Distribution after one collision

P (θj′) =
1

2

[

1 + A20 a2 P2(cos θj′)
]



Collisional depolarization
of

OH(A) and NO(A) by Ar



Zeeman quantum beats

No field: OH R11(4) ↑ transition

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

in
te

n
si

ty
/
a
rb

.
u
n
it

time / ns

H =0 Gauss

Exponential population decay

[OH∗] = [OH∗]0 e−k0t



Zeeman quantum beats

Population decay

[OH∗] = [OH∗]0 e−k0t

k0 = krad + kQ[Ar]

krad - radiative decay (τrad ∼ 700 ns for OH(A))

kQ - electronic quenching (relatively small for Ar)



Zeeman quantum beats

With field: R11(4) ↑ transition (unresolved emission)

H = 4 Gauss
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Zeeman quantum beats

[OH∗] = [OH∗]0 e−k0t{1 + C e−k2t ∑

F
cos (2πωLt + φ)}

with
ωL = gFµ0H/h

Oscillations at two frequencies for F = 5 and 6.



Zeeman quantum beats

Depolarization and dephasing: Beat amplitude, C

[OH∗] = [OH∗]0 e−k0t{1 + C e−k2t ∑

F
cos (2πωLt + φ)}

0 200 400 600
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

In
te

n
si

ty
/
a
rb

.
u
n
it

Time / ns

Proportional to rotational alignment of excited OH(A)



Zeeman quantum beats

Orientation signal with resolved emission branch:

Proportional to rotational orientation of excited OH(A)



Zeeman quantum beats

With Field: Pressure dependence.
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Zeeman quantum beats

Depolarization and dephasing

[OH∗] = [OH∗]0 e−k0t{1 + C e−k2t ∑

F
cos (2πωLt + φ)}

k2 = kinhom + k
(2)
d [Ar]

kinhom - dephasing by field inhomogeneities

k
(2)
d - collisional depolarization by Ar (k

(2)
d ∼ vrelσ

(2)
d )



Link with theory - e.g., for disalignment

Depolarization rate constant, k
(2)
d ∼ vrelσ

(2)
d

k
(2)
d = kc (1 − a2)

where kc is the collision rate constant (e.g., for energy transfer)

Three cases:

1. a2 = +1.0 k
(2)
d = 0 no depolarization

2. a2 = 0.0 k
(2)
d = kc depolarization rate same as collision rate

3. a2 = −0.5 k
(2)
d = 1.5kc depolarization faster than collision rate



Trends in depolarization cross-sections

OH(A) + Ar (300 K)

‘Disorientation’ ‘Disalignment’

Cross-sections are large (long range interaction).

Cross-sections decrease with N (angular momentum conservation).

‘Disalignment’ more probable than (‘disorientation’).



Zeeman quantum beats

Collisional processes leading to depolarization

Inelastic depolarization (rotational energy transfer)

Elastic depolarization (Mj-changing)



Comparison with rotational energy transfer

OH(A) + Ar (300 K)

‘Disorientation’ ‘Disalignment’

Depolarization more efficient than RET (a2 . 0)



Zeeman quantum beats

Caveat: we detect unresolved OH(A) emission

• Populated levels have different gF values - leads to a dephasing

• Important for spin-rotation changing collisions

• Effects can be accounted for, although better to resolve emission



Elastic depolarization

Employ higher resolution emission

OH(A) + Ar (300 K)

‘Disorientation’ ‘Disalignment’

Previous work: elastic contribution to σ
(2)
d ∼ 20 Å2 for N = 4 ‡

‡
E.A. Brinkman and D.R. Crosley J. Chem. Phys. (2004)



Comparison with hyperfine quantum beats: NO(A)

Coherent superposition of hyperfine levels (Low N)

Observe two of the three Hyperfine beat frequencies.



Hyperfine quantum beats: NO(A)

Initial distribution of J

Z
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e
a

e
d

Nuclear spin, I, initially unpolarized.



Hyperfine quantum beats: NO(A)

Alignment of J reduced

Z

Y
X

e
a

e
d

Nuclear spin, I, becomes aligned.



Hyperfine quantum beats: NO(A)

Alignment of J and I cycle in time

Z

Y
X

e
a

e
d

See T.P. Rakitzis, Phys. Rev. Lett. (2005)



Hyperfine quantum beats: NO(A)

Beat signal

S21(0) ↑ R22(4) ↑
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Hyperfine quantum beats: NO(A)

Depolarization cross-sections

NO(A) + Ar (300 K)
• ‘Hyperfine’ • ‘Zeeman’

Reasonable agreement between hyperfine and Zeeman beat data

Depolarization has similar efficiency to RET (a2 & 0).



Trends in depolarization cross-sections

OH(A) + Ar versus NO(A) + Ar at 300 K

NO(A) + Ar •

OH(A) + Ar •

Well-depth for NO(A)+Ar is one tenth that of OH(A) + Ar

Balanced by kinematic/energetic factors and differences in ak parameters



OH(A) + Ar potential

Strongly attractive and highly anisotropic PES

J. K los and M.H. Alexander et

al., J. Chem. Phys. (2008)
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NO(A) + Ar potential

Very weakly attractive PES

K los et al., in preparation (2008)

D0 ∼ 44 cm−1 ‡

‡
T.G. Wright and coworkers, J. Chem. Phys. (2000)



Kinematics or dynamics?

RET cross-sections (N = 5)

14NO(A) + Ar •

1NO(A) + Ar •

OH(A) + Ar •

Changing PES makes a factor of ∼2 difference in σc

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz

New PES by J. K los and M.H. Alexander



Kinematics or dynamics?

Depolarization cross-sections at 300 K

NO(A) + Ar • NO(A) + He •

These differences mainly due to the PES



Kinematics or dynamics?

RET cross-sections (N = 7)

NO(A) + 4Ar •

NO(A) + 40Ar •

NO(A) + He‡ •

These differences mainly due to the PES and not kinematics

‡ Experiments of Imajo et al. Chem. Phys. Lett. (1987).



Role of electron and nuclear spin

Spin is a spectator in 2Σ+ radicals

f2 : J = N − S

↑
f1 : J = N + S

N

N’
S

Spin-rotation changing collisions only occur if N is strongly depolarized.



OH(A) + Ar and spin-rotation changing collisions

• — CC QM (o-s) • — QCT (o-s)

Spin-rotation changing collisions play an important role for OH(A) + Ar

QCT calculations by C.J. Eyles and F.J. Aoiz

QM and new PES by J. K los and M.H. Alexander



OH(A) + Ar and spin-rotation changing collisions

Increasing K −→

QCT calculations by C.J. Eyles

and F.J. Aoiz

New PES by J. K los and M.H.

Alexander

Spin-rotation changing collisions require large K

These are enhanced for OH(A) + Ar by the deep well



OH(A) + Ar and spin-rotation changing collisions

‘Disalignment’ coefficients

QCT calculations by C.J. Eyles and F.J. Aoiz

New PES by J. K los and M.H. Alexander



OH(A) + Ar and hyperfine changing collisions

QCT Calculations
• Hyperfine conserving • Hyperfine changing

Also play an important role for OH(A) and NO(A) + Ar

QCT calculations by C.J. Eyles and F.J. Aoiz

QM and new PES by J. K los and M.H. Alexander



NO(A) + Ar and hyperfine changing collisions

‘Disorientation’ coefficients

N = 2, j = 1.5, F = 2.5
Spin-rotation conserving Spin-rotation changing

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz

New PES by J. K los and M.H. Alexander



Full simulation of experiment

NO(A) + Ar

• QCT (o-s) theory • Experiment

QCT calculations by C.J. Eyles, H. Chadwick, and F.J. Aoiz

QM and new PES by J. K los and M.H. Alexander



Full simulation of experiment

OH(A) + Ar

• QCT (o-s) theory • Experiment

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz

QM and new PES by J. K los and M.H. Alexander



Mechanisms of depolarization

Impulsive collision conserve projection of j (Ma) along kinematic apse

âk = k′−k
|k′−k|



Mechanisms of depolarization

NO(A) + Ar tends to be impulsive.

QCT N = 2 → N ′ = 3

OH(A) + Ar is impulsive only for larger ∆j.

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz

QM and new PES by J. K los and M.H. Alexander



Mechanisms of depolarization

NO(A) + Ar tends to be impulsive (ak & 0).

QCT N = 2 → N ′ = 4

NOAr.mpg

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz

QM and new PES by J. K los and M.H. Alexander


ji2jp4NOAr.mpg
Media File (video/mpeg)



Mechanisms of depolarization

OH(A) + Ar is not impulsive at low ∆j (ak . 0).

QCT N = 2 → N ′ = 4

OHArimp.mpg

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz

QM and new PES by J. K los and M.H. Alexander


ji2jp4OHArimp.mpg
Media File (video/mpeg)



Mechanisms of depolarization

‘Roaming’ trajectories seen at low ∆j for OH(A) + Ar

QCT N = 2 → N ′ = 4

OHArorb.mpg

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz

QM and new PES by J. K los and M.H. Alexander


ji2jp4OHArorb.mpg
Media File (video/mpeg)



Mechanisms of depolarization

Complex trajectories seen at low ∆j for OH(A) + Ar

QCT N = 2 → N ′ = 4

Cricket.mpg

QCT calculations by C.J. Eyles, H. Chadwick and F.J. Aoiz

QM and new PES by J. K los and M.H. Alexander


ji2jp4OHArcricket.mpg
Media File (video/mpeg)



Mechanisms of depolarization: opacity functions

OH(A) + Ar and the role of OH(A)—Ar complexes.

QCT versus CC QM (c-s) (N = 2)
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QM calculations by J. Kløs and C.J. Eyles

QM and new PES by J. K los and M.H. Alexander



Zeeman quantum beats

Collisional depolarization: Some conclusions.

• Less efficient at high N - angular momentum conservation.

• Attractive long-range interaction plays crucial role for OH(A)+Ar.

• Both elastic and inelastic depolarization are important.

• Depolarization efficiency relative to RET is very system dependent.

• For 2Σ+ radicals S and I are spectators in the collision.

• The effects of S and I can be accommodated in QCT calculations.

• σ
(k)
d are large for spin-rotation and hyperfine state-changing collisions.



The End


