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Collisional depolarization



Collisional depolarization

J
J’

Z

qj j’

How easy is it to change the direction of J by collision?

Relevant to the detection of OH(X) or NO(X) by LIF.



Collisional depolarization

K

Can be characterized in terms of the angular momentum transferred, K

Often assumed that K is minimized in collisions



Angular distribution (OH(A) + Ar)

Increasing K −→

QCT calculations by C.J. Eyles and F.J. Aoiz

New PES by J. K los and M.H. Alexander



Angular distribution
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Disalignment (even terms)

a2 = 〈P2(cos θj j′)〉 − 0.5 ≤ a2 ≤ +1.0

Disorientation (odd terms)

a1 = 〈P1(cos θj j′)〉 − 1.0 ≤ a1 ≤ +1.0



Motivation

Rotational polarization

• Angular dependence of potential energy surface

• Mechanistic information

Aims

• Measure polarization using quantum beat spectroscopy.

• Weak magnetic field effects in chemistry.

• Control of angular momentum orientation and alignment.



Zeeman quantum beat spectroscopy



OH source and detection

Pump

H2O2 + hν −→ OH(X2Π) + OH(X2Π)

Probe

OH(X2Π) + hν′ −→ OH(A2Σ+)

[

or NO(X2Π) + hν′′ −→ NO(A2Σ+)
]

Use a long (250 ns or 10 µs) pump-probe laser delay.



Experiment

Detect OH(X2Π) by polarized laser induced fluorescence...

Kr

...in presence of a weak magnetic field.



OH(X) spatial distribution

Spatial distribution of OH(X2Π) is nearly isotropic.

H||Z

Y
X

No net magnetic moment, no precession about the field



Initial OH(A) spatial distribution

Excite OH(X) with linearly polarized probe radiation.

Transition probability P ∝ | µ̂OH · ǫ̂a |2

H||Z

Y
X

e
a

Generates an aligned ensemble of excited OH(A2Σ+) radicals.



Zeeman quantum beats

Precesses in magnetic field with Larmor frequency, ωL.
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Observe emission through a linear polarizer.



Zeeman quantum beats

Alternative picture: R11(4) ↑ transition

Coherent excitation of Zeeman levels.



Link with theory (linearly polarized light)

Initial aligned distribution

P (θj) =
1

2

[

1 + A20P2(cos θj)
]

Distribution after one collision

P (θj′) =
1

2

[

1 + A20 a2 P2(cos θj′)
]



Collisional depolarization
of

OH(A) and NO(A) by Ar at 300 K



Zeeman quantum beats

No field: OH R11(4) ↑ transition
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Exponential population decay

[OH∗] = [OH∗]0 e−k0t



Zeeman quantum beats

Population decay

[OH∗] = [OH∗]0 e−k0t

k0 = krad + kQ[Ar]

krad - radiative decay (τrad ∼ 700 ns for OH(A))

kQ - electronic quenching (relatively small for Ar)



Zeeman quantum beats

With field: R11(4) ↑ transition

H = 4 Gauss
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F
cos (2πωLt + φ)}



Zeeman quantum beats

[OH∗] = [OH∗]0 e−k0t{1 + C e−k2t ∑

F
cos (2πωLt + φ)}

with
ωL = gFµ0H/h

Oscillations at two frequencies for F = 5 and 6.



Zeeman quantum beats

Depolarization and dephasing: Beat amplitude, C

[OH∗] = [OH∗]0 e−k0t{1 + C e−k2t ∑

F
cos (2πωLt + φ)}
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Proportional to rotational alignment of excited OH(A)



Zeeman quantum beats

With Field: Pressure dependence.
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Zeeman quantum beats

Depolarization and dephasing

[OH∗] = [OH∗]0 e−k0t{1 + C e−k2t ∑

F
cos (2πωLt + φ)}

k2 = kinhom + kd [Ar]

kinhom - dephasing by field inhomogeneities

kd - collisional depolarization by Ar (kd ∼ vrelσd)



Link with theory

Depolarization rate constant, kd ∼ vrelσd

kd = kc (1 − a2)

where kc is the collision rate constant (e.g., for energy transfer)

Three cases:

1. a2 = +1.0 kd = 0 no depolarization

2. a2 = 0.0 kd = kc depolarization rate same as collision rate

3. a2 = −0.5 kd = 1.5kc depolarization faster than the collision rate



Zeeman quantum beats

Trends in depolarization cross-sections:

OH(A) + Ar (300 K)

Cross-sections are large (long range interaction).

Cross-sections decrease with N ′ (angular momentum conservation).



Zeeman quantum beats

Collisional processes leading to depolarization

Inelastic depolarization (rotational energy transfer)

Elastic depolarization (velocity changing)



Zeeman quantum beats

Comparison with rotational energy transfer:

OH(A) + Ar (300 K)

Depolarization more efficient than RET (a2 . 0 for this system)

Elastic contribution to σd ∼ 20 Å2 for N = 4 ‡

‡ E.A. Brinkman and D.R. Crosley J. Chem. Phys. (2004)



Zeeman quantum beats

Caveat: we detect unresolved OH(A) emission

• Populated levels have different gF values - leads to a dephasing

• Important for spin-rotation changing collisions

• Effects can be accounted for, although better to resolve emission



Comparison with hyperfine quantum beats: NO(A)

Coherent superposition of hyperfine levels (Low N ′)

Observe two of the three Hyperfine beat frequencies.



Hyperfine quantum beats: NO(A)

Initial distribution of J
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Nuclear spin, I, initially unpolarized.



Hyperfine quantum beats: NO(A)

Alignment of J reduced
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Nuclear spin, I, becomes aligned.



Hyperfine quantum beats: NO(A)

Alignment of J and I cycle in time
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See T.P. Rakitzis, Phys. Rev. Lett. (2005)



Hyperfine quantum beats: NO(A)

Beat signal

S21(0) ↑ R22(4) ↑
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Amplitude decreases rapidly with J.



Hyperfine quantum beats: NO(A)

Depolarization cross-sections

• ‘Hyperfine’ • ‘Zeeman’

NO(A) + Ar (300 K)

Reasonable agreement between hyperfine and Zeeman beat data

Depolarization is less efficient than RET (a2 > 0 for NO(A) + Ar)



Trends in depolarization cross-sections

OH(A) + Ar versus NO(A) + Ar at 300 K

NO(A) + Ar •

OH(A) + Ar •

Well-depth for NO(A)+Ar is one tenth that of OH(A) + Ar

Balanced by kinematic/energetic factors



OH(A) + Ar potential

Strongly attractive and highly anisotropic PES

J. K los and M.H. Alexander,

in preparation (2007)
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NO(A) + Ar potential

Very weakly attractive PES

N. Shafizadeh et al.,

J. Chem. Phys (1998)

D0 ∼ 44 cm−1 ‡

‡ T.G. Wright and coworkers, J. Chem. Phys. (2000)



Role of electron and nuclear spin

Spin is a spectator in 2Σ+ radicals

f2 : J = N − S

↑
f1 : J = N + S

N

N’
S

Spin-rotation changing collisions only occur if N is strongly depolarized.



OH(A) + Ar and spin-rotation changing collisions

• — QM • — QCT

Play an important role for OH(A) + Ar

QCT calculations by C.J. Eyles and F.J. Aoiz

QM and new PES by J. K los and M.H. Alexander



OH(A) + Ar and spin-rotation changing collisions

Increasing K −→

QCT calculations by

C.J. Eyles and F.J. Aoiz

New PES by J. K los and

M.H. Alexander

Spin-rotation changing collisions require large K

These are enhanced for OH(A) + Ar by the deep well



OH(A) + Ar and rotational energy transfer

‘Disalignment’ coefficients

• QCT

QCT calculations by C.J. Eyles and F.J. Aoiz

New PES by J. K los and M.H. Alexander



Final thought

‘Disorientation’ coefficients?

Use circularly

polarized light
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Provides a means of measuring a1 = 〈P1(cos(θ))〉



Zeeman quantum beats

Collisional depolarization: Some conclusions.

• Less efficient at high N ′ - angular momentum conservation.

• Attractive long-range interaction plays crucial role.

• Both elastic and inelastic depolarization can be important.

• Depolarization efficiency relative to RET is very system dependent.

• For 2Σ+ radicals S and I are spectators in the collision.

• σd is large for spin-rotation and hyperfine state-changing collisions.



The End


