Zeeman quantum beat spectroscopy as a probe of angular momentum polarization in chemical processes.

Mark Brouard

The Department of Chemistry Oxford University

ACS Autumn Meeting, September 2006

The Group

Raluca Cireasa*	Visiting scientist
Ivan Anton Garcia*	Post-doc., now at Leeds
Sarandis Marinakis*	D.Phil., now at Heriot Watt
Andrew Clark	D.Phil. student
Fabio Quadrini*	D.Phil. student
Alexander Bryant*	Part II student
David Case*	Part II student
Nicholas Screen*	Part II student
Yuan-Pin Chang*	Visiting student

Collaborations

Claire Vallance F. Javier Aoiz Royal Society Fellow

Funding

EPSRC Royal Society

Introduction

Photodissociation

$ABC + h\nu \longrightarrow A(\mathbf{j}) + BC(\mathbf{v}',\mathbf{j}')$

Angular momentum can be polarized

Measure angular distribution of j or j^\prime

Reaction

 $A + BC \longrightarrow AB(v', j') + C(j'')$

Torques generated on potential energy surface

Rotational polarization

- Angular dependence of potential energy surface
- Mechanistic information

Aims

- Measure polarization using a weak magnetic field.
- Weak magnetic field effects in chemistry.
- Control of angular momentum orientation and alignment.

Collisional depolarization

- How easy is it to change the direction of \mathbf{j} by collision?
- Quantified by cross-section, σ_d (also related to $a_2 = \langle P_2(\cos \theta_{j j'}) \rangle$)
- Relevant to the detection of OH(X) or NO(X) by LIF.

Zeeman quantum beat spectroscopy

Pump

$H_2O_2 + h\nu \longrightarrow OH(X^2\Pi) + OH(X^2\Pi)$

Probe

$$OH(X^{2}\Pi) + h\nu' \longrightarrow OH(A^{2}\Sigma)$$

[or $NO(X^{2}\Pi) + h\nu'' \longrightarrow NO(A^{2}\Sigma)$]

Use a long (250 ns or $10 \,\mu$ s) pump-probe laser delay.

Detect $OH(X^2\Pi)$ by *polarized* laser induced fluorescence...

...in presence of a *weak magnetic field*.

OH(X) spatial distribution

Spatial distribution of $OH(X^2\Pi)$ is nearly *isotropic*.

No net magnetic moment, no precession about the field

Initial OH(A) spatial distribution

Excite OH(X) with *linearly* polarized probe radiation.

Transition probability $P \propto |\hat{\mu}_{OH} \cdot \hat{\epsilon}_a|^2$

Generates an *aligned* ensemble of excited $OH(A^2\Sigma)$ radicals.

Zeeman quantum beats

Precesses in magnetic field with Larmor frequency, ω_{L} .

Observe emission through a linear polarizer.

Zeeman quantum beats

Alternative picture: $R_{11}(4) \uparrow$ transition

Coherent excitation of Zeeman levels.

Collisional depolarization of OH(A) and NO(A) *No field:* $R_{11}(4) \uparrow$ transition

Exponential *population* decay

$$[OH^*] = [OH^*]_0 e^{-k_0 t}$$

Population decay

$$[OH^*] = [OH^*]_0 e^{-k_0 t}$$

$$k_0 = k_{\rm rad} + k_{\rm flyout} + k_{\rm q}[{\rm H}_2{\rm O}]$$

$$k_{\rm rad}$$
 - radiative decay ($\tau_{\rm rad} \sim 700 \, {\rm ns}$)

 $k_{\rm flyout}$ - OH(A)* *flyout* on 1 μ s timescale ($v_{\rm OH} \sim 3500 \,{\rm m\,s^{-1}}$)

$$k_q$$
 - electronic quenching ($k_q = v_{rel} \sigma$)

Electronic quenching by H_2O : $v_{rel} \sim 3500 \text{ m s}^{-1}$

Comparison with the 300 K measurements of:

Cleveland and Wiesenfeld (\Diamond) and Copeland *et al.* (•).

Translational cooling of OH(X): Doppler resolved LIF

Reveals average $v_{\rm OH} \sim 3500 \,{\rm m\,s^{-1}}$ on 700 ns timescale.

Indicative of the likely extent of *relaxation* in OH(A).

Electronic quenching by H_2O : $v_{rel} \sim 3500 \text{ m s}^{-1}$

Capture model

$$\sigma(E_{\rm t}) = \pi R_{\rm H}^2 P_{\rm H} \left[1 + \frac{V(R_{\rm H})}{E_{\rm t}} \right]$$

Conical intersections: Schatz and Coworkers and Lester and coworkers Complex formation: Crosley and coworkers

Harpoon mechanism: Heard and Paul and coworkers

Electronic quenching by H_2O : $v_{rel} \sim 3500 \text{ m s}^{-1}$

Comparison with kinetic data (this work ****)

Heard and Paul and coworkers, Chem. Phys. Lett. (1999) and references therein.

Zeeman quantum beats

With field: $R_{11}(4) \uparrow$ transition

 $[OH^*] = [OH^*]_0 e^{-k_0 t} \{1 + C e^{-k_2 t} \sum_F \cos(2\pi\omega_L t + \phi)\}$

Zeeman quantum beats

$$[OH^*] = [OH^*]_0 e^{-k_0 t} \{1 + C e^{-k_2 t} \sum_F \cos(2\pi\omega_L t + \phi)\}$$

with

 $\omega_{\rm L} = g_F \mu_0 H/h$

Oscillations at *two frequencies* for F = 5 and 6.

Depolarization and dephasing: Beat amplitude, C

 $[OH^*] = [OH^*]_0 e^{-k_0 t} \{1 + C e^{-k_2 t} \sum_F \cos(2\pi\omega_L t + \phi)\}$

Proportional to rotational alignment of excited OH(A)

 $C = 0.102 \pm 0.017$ (theory gives 0.096).

With Field: Pressure dependence.

Collisional population decay and depolarization

Depolarization and dephasing

$$[OH^*] = [OH^*]_0 e^{-k_0 t} \{1 + C e^{-k_2 t} \sum_F \cos(2\pi\omega_L t + \phi)\}$$

$$k_2 = k_{\text{inhom}} + k_{\text{d}} [\text{H}_2\text{O}]$$

k_{inhom} - dephasing by field inhomogeneities

- $k_{\rm d}$ collisional depolarization, $k_{\rm d} = k_{\rm ret} + k_{\rm vel} \sim v_{\rm rel} \sigma_{\rm d}$
- *k*_{ret} depolarization by inelastic (*rotational energy transfer*) collisions
- k_{vel} depolarization by elastic (*velocity changing*) collisions

Trends in depolarization cross-sections:

'Superthermal' •

Cross-sections are *large* (long range interaction).

Cross-sections decrease with N' (angular momentum conservation).

Collisional processes leading to depolarization

Both elastic and inelastic processes contribute to k_{d}

Examples of collisional depolarization

Zeeman quantum beats

Comparison with rotational energy transfer:

'Superthermal' •

Depolarization *less efficient* than RET (for this system).

Both *elastic and inelastic* depolarization play a role.

Zeeman quantum beats

Caveat: we detect unresolved OH(A) emission

- Populated levels have different g_F values leads to a dephasing
- Important for spin-rotation changing collisions
- Effects can be accounted for, although better to resolve emission

Coherent superposition of hyperfine levels (Low N')

Observe two of the three Hyperfine beat frequencies.

Hyperfine quantum beats: NO(A)

Initial distribution of **J**

Nuclear spin, I, initially unpolarized.

Hyperfine quantum beats: NO(A)

Alignment of **J** reduced

Nuclear spin, I, becomes aligned.

Hyperfine quantum beats: NO(A)

Alignment of **J** and **I** cycle in time

See T.P. Rakitzis, Phys. Rev. Lett. (2005)

Beat signal

Amplitude decreases rapidly with J.

Depolarization cross-sections

Reasonable agreement with Zeeman beat data.

Trends in depolarization cross-sections

Ar is much *less efficient* at depolarizing than water.

Thermal cross-sections *much larger* than 'superthermal' cross-sections.

Long range interactions important (cf. electronic quenching).

Relatively attractive and highly anisotropic PES.

Well depth about 1000 cm^{-1} .

T.A. Miller and coworkers, J. Mol. Struct. (2000).

Trends in depolarization cross-sections

Ar depolarizes NO(A) less efficiently than it does OH(A).

Well-depth for NO(A)+Ar is about *one tenth* that of OH(A)+Ar.

Kinematic/energetic differences may also be important.

Depolarization cross-sections: potentially reactive system

 H_2 behaves similarly to non-reactive systems.

Reactive region of the potential not important for depolarization.

Depolarization cross-sections: potentially reactive system

Ar and N_2 behave similarly although OH(A) can react with N_2 . The lowest rotational levels appear to behave differently. Collisional depolarization: Some conclusions.

- Less efficient at high N' angular momentum conservation.
- Seems to involve a long-range interaction cf., RET.
- Both elastic and inelastic depolarization play a role.
- Depolarization efficiency relative to RET is very system dependent.
- For $OH(A) + H_2/N_2$ reactive channel not sampled.

Collisional depolarization: Future directions.

- QM or QCT scattering calculations (in progress).
- Resolve emission (significantly increases beat amplitude).
- What happens at low N', where electron spin is significant?
- Measurement of polarization in OH(X) or NO(X).
- Control of angular momentum polarization.

Future work: probing OH(X) polarization

Faraday rotation

$e.g., \quad H_2O_2 + h\nu \longrightarrow OH(^2\Pi) + OH(^2\Pi)$

Generates *aligned* distribution of $OH(^2\Pi)$ radicals.

Faraday rotation

Use short pump-probe laser delay

Excite $OH(^{2}\Pi)$ with *vertically* polarized probe radiation.

Generate aligned ensemble of excited $OH(^{2}\Sigma)$ radicals.

Alignment in ground state $OH(^{2}\Pi)$ is mapped onto $OH(^{2}\Sigma)$.

Faraday rotation

Precesses in magnetic field with Larmor frequency, ω_{L}

Observe emission through a linear polarizer.

